Power-law scaling and fractal nature of medium-range order in metallic glasses

D. Ma, A. D. Stoica and X.-L. Wang

The atomic structure of metallic glasses has been a long-standing scientific problem. Unlike crystalline metals, where long-range ordering is established by periodic stacking of fundamental building blocks known as unit cells, a metallic glass has no long-range translational or orientational order, although some degrees of short- and medium-range order do exist. Previous studies have identified solute- (minority atom)-centred clusters as the fundamental building blocks or short-range order in metallic glasses. Idealized cluster packing schemes, such as efficient cluster packing on a cubic lattice and icosahedral packing as in a quasicrystal, have been proposed and provided first insights on the medium-range order in metallic glasses. However, these packing schemes break down beyond a length scale of a few clusters. Here, on the basis of neutron and X-ray diffraction experiments, we propose a new packing scheme—self-similar packing of atomic clusters. We show that the medium-range order has the characteristics of a fractal network with a dimension of 2.31, and is described by a power-law correlation function over the medium-range length scale. Our finding provides a new perspective of order in disordered materials and has broad implications for understanding their structure–property relationship, particularly those involving a change in length scales.

Fractals are ubiquitous in nature. Unlike what they appear to be at first glance, clouds are not spheres, mountains are not cones, islands are not circles; instead, they are fractals. Characterized by self-similarity, scale invariance and fractal dimension, a fractal geometry is the same ‘from near or from far’, forming the missing complement to Euclidean geometry and crystalline symmetry. Fractals are also found in a variety of condensed-matter systems including polymers, composite materials, membranes, porous media, colloids and aerosols. The self-similar aggregates of gold nanoparticles in suspension are, for example, a well-recognized class of microscopic fractals. Borjesson et al. have used reverse Monte Carlo simulation to analyse the neutron diffraction data of similar glasses. Their simulation results suggested a fractal structure with an upper correlation length of about 15–20 Å, although D_f could not be determined owing to the limited number of atoms used in the simulation. While the results from these early studies are encouraging, there has been no direct evidence that links the structure of a glass to a fractal network. Here, we present such evidence for metallic glasses, which are made by rapid cooling of molten metals and represent an important class of complex disordered materials.

The initial evidence of a fractal structure in metallic glass came from the analysis of the diffraction peak positions. In a crystalline metal or alloy, atoms are arranged periodically on a lattice and the first Bragg peak in the powder diffraction pattern always corresponds to the largest interplanar distance ($d_1 \propto 1/q_1$, where q_1 is the first peak position in momentum transfer), for example, $d_{(11)}$ in face-centred-cubic copper. When scaling this linear length ($1/q_1$) with the atomic volume (V_a, see below), a power of 1/3 is always obtained. This is also valid when scaling a strained lattice constant under tension or compression, which is in fact the basis of strain measurements by X-ray and neutron diffraction. This 1/3 power law is therefore a direct consequence of the crystalline long-range order in the three-dimensional Euclidean space. In a molecular gas, where only short-range order (SRO) is present, V_a is related to the interatomic distance following the well-known Ehrenfest relationship and is thus expected to also obey the 1/3 power-law scaling with the molecular volume. In amorphous solids such as a metallic glass, atomic correlations extend well beyond SRO into the medium-range order (MRO) regime, but the lack of long-range periodicity makes the glass structure look ‘disordered’. A signature of this ‘disordered’ structure is the ‘missing’ (or ’smearing’ of) Bragg peaks from the diffraction pattern and, as a replacement, the emergence of a few diffuse scattering haloes. The first halo in such a pattern has been referred to as the first sharp diffraction peak (FSDP). Indeed, in metallic glasses, the first diffraction peak shows a typical full-width at half-maximum of 0.4–0.5 Å⁻¹, much sharper than those at high q, the widths of which are 1.4–1.8 Å⁻¹. It is therefore anticipated that the FSDP carries significant information about order in metallic glasses. Thus, in what follows, we will concentrate our analysis on the FSDP.

Table 1 summarizes experimental values of q_1 for a variety of metallic glasses, determined from neutron and X-ray diffraction studies in the present work and in the literature. In the present study, metallic glasses of Zr$_5$Cu$_40$–Al$_{4}$ (x = 35.5, 38.6, 44.0, 50.0, 54.5, 60.0) and Zr$_{53.5}$Cu$_{28.5}$Ni$_{19.4}$Al$_{1.4}$ were fabricated using melt-spinning and copper-mould casting, respectively. Neutron scattering experiments of these glasses were carried out on the General Purpose Powder Diffractometer at Argonne National Laboratory. The structure factor $S(q)$ ($q = 4\pi \sin \theta / \lambda$, where θ is half of the scattering angle and λ is the neutron wavelength) and the reduced pair distribution function, $G(r) = (2/\pi)^{2/3} q S(q) - 1 \sin(qr) dq$, where r is the distance and q_{max} is the maximum value of q for the Fourier transform, were obtained by analysing the scattering data as described elsewhere. Also listed in Table 1 are atomic volumes (ν_a) determined from mass density (ρ_m) measurements, that is, $\nu_a = \rho_m/(N_a M)$, where N_a is Avogadro’s number and M is the...
molecular weight. It is noted that, as v_s decreases from 28.56 to 14.57 (by ~50%), q_1 increases from 2.20 to 2.91 (by ~30%). Plotting q_1 versus v_s on a logarithmic scale revealed a scaling relationship, as shown in Fig. 1. All data points fall on a line, despite the diversity of metallic glasses ranging from binaries to quinarys. Although the present study was undertaken for metal–metal glasses, a similar scaling relationship seems to hold also for metal–metalloid glasses based on a preliminary analysis of a rather limited data set. Linear fitting of the data in Table 1 yields the following relationship,

$$q_1 \cdot v_s^{0.433 \pm 0.007} = 9.3 \pm 0.2.$$

As discussed above, a power of 1/3 is expected when scaling $1/q_1$ with v_s for crystalline metals with long-range order and for molecular gas with SRO alone. However, in contrast, the best fit to the metallic-glass data yields a power of 0.433 ± 0.007, significantly different from 1/3. This large discrepancy shows that the metallic-glass structure is distinctly different from its crystalline counterpart. We interpret this discrepancy as evidence of a fractal network, with the fractal dimension given by $D_f = 1/0.433 = 2.31$. We notice that our observed D_f of 2.31 in metallic glasses is comparable to the fractal dimension of silica particle aggregates (2.27–2.65) determined by small-angle scattering, and to that of 2.56 for aggregating proteins and 2.05 for colloidal gold particles. It is also noted that the D_f of metallic glasses is close to the fractal dimension of quasicrystals (2.72 (ref. 25)), which exhibit a quasiperiodic long-range order and are characterized by a hierarchy of atomic clusters, demonstrating the structural similarity between metallic glasses and quasicrystals.

In addition to exhibiting a universal scaling relationship, the FSDP position also correlates closely with q_{21} and q_{22}, the positions of the second peak and its shoulder in $S(q)$, as shown in the inset of Fig. 2. In particular, for the Zr$_x$Cu$_{100-x}$ glasses, our neutron data show that

$$q_{21}/q_1 = 1.74 \pm 0.02,$$

$$q_{22}/q_1 = 1.96 \pm 0.02.$$
where q_{21} and q_{32} were obtained by fitting the second peak and its shoulder in the $S(q)$ using two Gaussian functions.

Figure 2 shows the $G(r)$ of a Cu$_{64.5}$Zr$_{35.5}$ glass, obtained by Fourier transforming the $S(q)$ (see the inset) terminated at a value of q_{max}. Two cases have been investigated corresponding to q_{max} of 15.0 and 6.9 Å$^{-1}$ (indicated by the arrow in the inset), respectively. It can clearly be seen that the $G(r)$ profiles beyond the second coordination shell ($r \geq 6.2$ Å, indicated by the arrow in Fig. 2) are essentially the same. Thus, the medium-range $G(r)$ is determined primarily by the $S(q)$ in the q-range of less than 6.9 Å$^{-1}$, which covers q_{1}, q_{21} and q_{32}. Because q_{1}, q_{21} and q_{32} are related, this result further demonstrates that the MRO is indeed embodied by the FSDP, as has been noted by Cargill30. We therefore conclude that the scaling relationship of q_{1} in metallic glasses comes from the MRO.

Next, we demonstrate that analytically, the experimentally determined atomic pair distribution function fits the description of a fractal network. From $G(r)$, the differential pair distribution function, $g(r) - 1 = (G(r)/4\pi r \rho_{0})$ (where ρ_{0} is the number density) was determined and is plotted in Fig. 3. The following discussions follow closely the framework of a monodispersed colloidal system. Colloids are small particles dispersed in a medium, usually fluid. Colloids are a convenient tool to study particle packing31. Recently, densified colloidal systems have been used to study glass transitions, often with confinement as a tuning parameter32, and the structural rearrangement of shear-transformation zones under applied load33.

If, in metallic glasses, the MRO is indeed described by packing of quasi-equivalent clusters on a fractal network, then the cluster number follows a power-law distribution, that is, $N(r) \sim r^{D_{i}}$ (ref. 7), where $N(r)$ is the number of clusters within a radius r around a given cluster. This leads to a differential cluster correlation function of the form $C(r) = g_{\text{cluster}}(r) - 1 \sim A/r^{D_{i}-D_{C}}$, where A is a constant. Following the work by Freltoft and al7, which considers the fractal structure of aggregating particles in a colloidal system, we can express $C(r)$ as

$$C(r) = (A/r^{D_{i}-D_{C}}) \exp(-r/\xi) \sin(q_{1}r + \phi),$$

where an exponential cutoff function is used to account for the finite cluster-size and cluster-entanglement effects6,7 and ξ is the cutoff length. Here, a sinusoidal function $\sin(q_{1}r + \phi)$ was introduced to describe the oscillatory correlation of the experimental $[g(r) - 1]$, with q_{1} being the position of the FSDP and ϕ being the phase shift. As shown in Fig. 3, a good fit was obtained to the experimental $[g(r) - 1]$ with equation (1) in the medium range of r from 6.5 to 25 Å for a typical metallic glass Zr$_{35.5}$Cu$_{64.5}$. In this fitting process, the value of $D - D_{i}$ was fixed as 0.69 ($= 3.2 - 2.51$) as determined from Fig. 1. The best fit yielded the following parameters: $A = 0.67 \pm 0.06$, $\xi = 4.00 \pm 0.08$ Å and $\phi = 0.12 \pm 0.01$. It is remarkable that equation (1), with a single q_{1} value (2.826 Å$^{-1}$), can account so well for the experimental $[g(r) - 1]$ for $r > 6.5$ Å. On the other hand, equation (1) failed to describe $[g(r) - 1]$ for $r < 6.5$ Å. This demonstrates again that fractal behaviour is only observed in the medium-range length scale. We also attempted to determine $D - D_{i}$ directly by fitting $[g(r) - 1]$, but this proved to be difficult. Nevertheless, by fitting to the amplitudes of the peaks and valleys of $[g(r) - 1]$ using equation (1) without the sinusoidal function, as described in the Methods section and shown in the inset of Fig. 3, we obtained a $D - D_{i}$ value of 0.67 ± 0.06 after averaging the fitting results for six Zr–Cu glasses and two Zr-based bulk metallic glasses (see Table 1). This value is consistent with what was extracted from the power-law scaling of q_{1} (0.69 ± 0.04). The excellent fitting results shown in Fig. 3 demonstrate that a power-law distribution function given by equation (1) provides an adequate description of the medium-range amorphous structure, confirming the fractal nature of cluster packing in metallic glasses.

To understand the fractal aspect of metallic glasses, it is helpful to examine the structure of a quasicrystal. The structure detail of a quasicrystal was recently visualized for the first time with a binary YbCd$_{5}$, quasicrystal27. Here, the basic building block, which comprises the bulk of the quasicrystal, is a rhombic triacontahedron (RTH), as illustrated in Fig. 4 of ref. 27. The RTH units themselves cannot fill the space, because of the local five-fold icosahedral symmetry. Two other types of building block are required, the so-called acute and obtuse rhombohedra, to fill in the gaps and connect the RTH units. The incomplete space filling by the RTH units leads to a number density that is dependent on r. In fact, as pointed out earlier, quasicrystals are fractals with a dimension of 2.72 (ref. 25). In YbCd$_{5}$, the RTH units form a hierarchical self-similar structure, with an inflation factor r^τ, where $\tau = (1 + \sqrt{5})/2$ is the golden ratio.

The cluster packing in metallic glasses can be understood in a similar way. In metallic glasses, the fundamental building blocks are solute-centred clusters, rather than individual atoms, with solute or...
In summary, the fractal nature of metallic glasses is revealed by the power-law scaling of the FSDP with the atomic volume, and is further verified by fitting the experimentally determined differential pair distribution function with a cluster correlation function over the medium-range length scale. This finding paves the way for understanding the MRO in metallic glasses using well-established mathematical tools developed for describing the structure and dynamics in fractals. The position of the FSDP, D_1, characterizes the medium-range correlation, which can be quite useful for gaining insights into structural evolutions involving a change in length scales. It would be interesting to examine, for example, how the fractal network of solute-centred clusters responds to applied load. From in situ synchrotron experiments, Poulsen et al. reported that under a uni-axial load, the nearest-neighbour atomic shell exhibits the stiffest response, whereas the responses from higher-order shells are progressively softer eventually approaching that of the strain gauges, suggesting that mechanical deformation is inhomogeneous at SRO and MRO length scales. As we mentioned earlier, a similar scaling relationship seems to hold also for metal–metalloid glasses, despite the difference in atomic bonding and cluster types. In fact, the diffraction patterns for metal–metalloid and metal–metal glasses look very much similar. These experimental observations suggest that fractal packing is a universal behaviour for metallic glasses. Further study is needed to fully establish the scaling relationship for metal–metalloid glasses, and to examine the influence of atomic bonding and cluster types. The framework of the present study will also find a wide range of applications for exploring fractals in a broad field of disordered condensed-matter systems.

Methods

Estimation of $D − D_1$ from correlation functions. A direct determination of $D − D_1$ from fitting with equation (1) is difficult because it correlates strongly with ξ and the parameter ϕ also needs to be determined. To eliminate the influence of ϕ and to test the sensitivity of $D − D_1$, we alternatively fitted only the amplitudes (h) of the peaks and valleys of the correlation function $g(r) − 1$ over the range of $7−25\,\text{Å}$, with the function $h(r) = A/r^{2D_1} \exp(-r/\xi)$. In the fitting process, we set A, $D − D_1$, and ξ as fitting parameters. The use of a power-law function ($r^{\phi−2\xi}$) alone with the exponential cutoff function leads to a much reduced χ^2 that has with an exponential function alone. By fitting each set of the peaks and valleys data obtained from neutron scattering experiments for six Zr–Cu glasses and two Zr-based bulk metallic glasses, Zr$_2$Cu$_{54}$Ni$_{46}$Al$_8$ and Zr$_{52}$Ti$_{48}$Cu$_{50}$Ni$_{46}$Al$_{10}$ (see Table 1), we determined an average value of $0.67 ± 0.06$ for $D − D_1$, which is consistent with the $D − D_1$ value of $0.69 ± 0.04$ obtained from analysis of the scaling relationship for $g(r)$.

Received 28 February 2008; accepted 3 November 2008; published online 7 December 2008

References

Acknowledgements

We thank Z. P. Lu and M. J. Kramer for providing the metallic-glass samples, H. Bei for help in density measurements and S. E. Nagler for helpful discussions. This research was supported by US Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.

Additional information

Reprints and permissions information is available online at http://npg.nature.com/reprintsandpermissions. Correspondence and requests for materials should be addressed to X.-L.W.