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The thermodynamic properties of amorphous phases of linear 
molecular chains are obtained from statistical mechanics by means 
of a form of the quasi-lattice theory which allows for chain stiffness 
and the variation of volume with temperature. A second-order 
transition is predicted for these systems. 

This second-order transition has all the qualitative features of 
the glass transition observed experimentally. It occurs at a tem­
perature which is an increasing function of both chain stiffness and 
chain length and a decreasing function of free volume. 

The molecular "relaxation times" are shown to increase rapidly 
as the second-order transition temperature is approached from 
above. 

To permit quantitative application of the theory and determine 

I. INTRODUCTION 

A SOLID phase is ordinarily designated as a glass 
if it is noncrystalline and exhibits what appears 

to be a second-order transition (in the sense of Ehren­
festl) often referred to as the glass transition, at some 
higher temperature. 

Although the glassy state is thus defined in terms of 
thermodynamic variables, it is not necessarily implied 
that the glassy state is one of even metastable (with 
reference to a possible crystalline phase) equilibrium. 
In fact characteristic relaxation times for molecular 
motions (as determined by viscoelastic and dielectric 
studies) are so large near the glass temperature that the 
value obtained for the latter may depend on the time 
scale of the experiment by which it is measured. The 
predominance of relaxation effects in the vicinity of 
the glass temperature has led some authors to assume 
that the very existence of the apparent second-order 
transition is a result of these admittedly unexplained 
peculiarities in viscoelastic behavior. 

On the other hand, difficulties arise in a purely 
kinetic view of the glass transition. Kauzmann2 has 
shown that, if the thermodynamic behavior observed 
experimentally in a material above its glass tempera­
ture is extrapolated through and below the glass tem­
perature, to obtain the supposed equilibrium behavior 
at these lower temperatures, absurd results, such as 
negative entropies, are obtained. 

Similar extrapolations may be obtained theoreticallT 
from the statistico-mechanical theory of semiflexible 
chains developed by Flory4 (in a paper which was 
primarily concerned with solutions of readily crystal­
lizable polymers rather than with glass forming systems) 
if results based on an approximation known to be valid 
at high temperatures are applied at low temperatures. 

1 P. Ehrenfest, Leiden Comm. Supp!. 756 (1933). 
2 W. Kauzmann, Chern. Revs. 43, 219 (1948). 
3 J. H. Gibbs, J. Chern. Phys. 25, 185 (1956). 
4 P. J. Flory, Proc. Roy. Soc. (London) A234, 60 (1956). 

the relationship between the second-order transition and the glass 
transition observed in "slow" experiments these two transitions 
are tentatively identified. By this means quantitative predictions 
are made concerning the variations of (1) glass temperature with 
molecular weight, (2) volume with temperature, (3) volume with 
molecular weight, (4) volume at the glass temperature with the 
glass temperature for various molecular weights of the same 
polymer, (5) specific heat vs temperature, and (6) glass tempera­
ture with mole fraction of low-molecular weight solvent, since 
extensive experimental results are available for these properties. 
These and other theoretical predictions are found to be in ex­
cellent agreement with the experimental results. 

Invocation of prior crystallization is a means of 
avoiding this difficulty in some cases.2•4 However, 
certain materials, such as atactic vinyl polymers, have, 
as their lowest energy conformations, shapes that can­
not pack in a regular array. Furthermore, many poly­
mers are easily supercooled. A resolution of the paradox, 
rather than mere avoidance of it, is apparently required.3 

Another shortcoming of current, purely kinetic, 
views of the glass transition is their failure to explain 
the kinetic phenomena themselves. Surely a description 
of the (metastable) equilibrium structure of the super­
cooled liquid phase approaching its glass temperature 
from above is a prerequisite to an understanding of its 
viscoelastic and dielectric sluggishness in this region. 

In any event, we can categorically state that a glass­
forming material has equilibrium properties (though 
they may be difficult to realize), and we may reason­
ably ask what they are. The present article is addressed 
to this question. The theory given below will, in fact, 
predict that a second-order transition can be observed 
even if the attainment of equilibrium is not prevented." 

Furthermore, we will see that, as we decrease the 
temperature of a glass forming material to this second­
order transition6 temperature, the number of states 
available to the system decreases sharply, so that there 
must be a drastic variation in kinetic (viscoelastic and 
dielectric etc.) properties. Thus the very equilibrium 
properties of the supercooled liquid give rise to kinetic 
sluggishness which may prevent the equilibrium second­
order transition point from being reached by an equi­
librium phase in an experimentally realizable amount of 
time. The actual amount of time required for the attain­
ment of equilibrium near the second-order transition 
point cannot, however, be calculated from an equi­
librium theory alone. 

6 A preliminary announcement of this conclusion is contained in 
reference 3. 

6 Throughout this paper we refer to the transition predicted 
theoretically as the second-order transition and the transition 
observed experimentally as the glass transition. 
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Nevertheless, for two reasons it is useful to examine 
the agreement between theoretical and experimental 
results which is afforded by tentative identification of 
the glass transition point (observed experimentally) 
with the (theoretical) second-order transition point: 
(1) Reasonably good agreement would support the 
contention of the theory that the thermodynamic 
second-order transition temperature is a lower limit, 
which must exist and which is obtained in experiments 
of infinite time scale, to the value of the glass tempera­
ture which can be observed experimentally, and (2) 
excellent agreement would suggest that the theoretical 
(thermodynamic) point and the experimental (at least 
partially though not fundamentally kinetic) point 
observed in "slow" experiments are close enough, or at 
least sufficiently stringently related, so that the two 
may be profitably viewed as one and the same. 

The principal requirements for the existence of the 
(theoretical) second-order transition in any given ma­
terial are molecular asymmetry and chain stiffness, 
the more elongated the molecule the higher the second­
order transition temperature, and the stiffer the 
molecule the higher the second-order transition temper­
ature. Therefore, successful identification of this transi­
tion with the glass transition would point to these 
properties as the principal criteria for glass formation. 

The calculations of Flory, which will be utilized in 
this discussion, are based on the familiar Meyer-Flory­
Huggins lattice modeF but depart from previous work 
in that they allow for the effects of chain stiffness to 
the extent that the latter may be approximated in a 
way which is strictly accurate only when said stiffness 
arises solely from nearest neighbor interactions along 
the molecular chains. 

A more general treatment,8 in which the nature of the 
restriction to rotation around any given chain bond is 
allowed to depend on the conformation of the rest of 
the molecule, also predicts the existence of a second­
order transition. However, its quantitative application 
requires currently unavailable knowledge of many 
molecular energy levels. Therefore, we will utilize, as a 
framework for the present discussion, a method based 
on the nearest neighbor approximation, which reduces 
to one the number of intramolecular (stiffness) energy 
parameters, in order to be able to effect a quantitative 
comparison of the properties of the two transition 
points in question. 

The more general treatment8 can be applied to cross 
linked and ringed systems as well as systems composed 
exclusively of linear chains and, in fact, predicts a 
second-order transition for these systems as well. How­
ever, most of the well-controlled experiments investi­
gating the glass transition have been carried out with 

7 A good list of references to work on this subject is given by 
P. J. Flory, Principles of Polymer Chemistry (Cornell University 
Press, Ithaca, 1953), Chap. XII. 

8 E. A. DiMarzio and J. H. Gibbs, "Chain stiffness and the 
lattice theory of polymer phases," J. Chern. Phys. (to be pub­
lished). 

systems of synthetic organic linear polymers which are 
simpler and easier to characterize chemically. Further­
more, the method involving the nearest neighbor ap­
proximation is only applicable to linear chains. There­
fore we restrict the present discussion of the relation 
between the second-order and glass transitions to these 
linear systems.9 

II. PARTITION FUNCTION AND THE SECOND­
ORDER TRANSITION 

We consider a system composed of nx linear polymer 
chains of x monomerlO segments each (x-mers). In 
common with usual practice7 we assume that all the 
allowed conformations of a molecular chain fit on a 
lattice whose sites are of such a size as to accommodate 
a maximum of one chain segment apiece. We allow for 
vacant sites and designate their number as no. If the 
number of primary valences of each of the atoms con­
stituting the chain backbone is z (for example, for 
carbon z=4) there are (z-l) possible (reasonably low 
energy) orientations of a bond, i, with respect to the 
coordinate system formed by the bonds, i -1, i - 2 of 
the same molecule (i~ 1, 2). We will associate an energy, 
fl, with one of these orientations and an energy, f2, 

with each of the z- 2 remaining orientationsY 
The total intramolecular (flex) energy is 

E= jf2(x-3)nx+ (1-j)fl(x-3)nx, (1) 

where jis the fraction of bonds "flexed,"12 i.e., bonds in 
the orientation of energy, f2. 

The intermolecular (hole) energy is proportional to 
the number of intermolecular "van der Waals bonds" 
which are broken on the introduction of no lattice 
vacancies, 

if> = z' (XnoS x' /2, (2) 

where (X is the energy of interaction, (the "van der 
Waals bond" energy) between a pair of chemically 

9 The present discussion will actually be restricted to the case 
of linear homopolymers. Copolymers have been treated, but, since 
this treatment in its best form requires use of the more general 
theory (see reference 8), it will not be given here, although its 
agreement with experimental results is excellent. 

10 The word "monomer" here refers to that unit which is con­
sidered to occupy one lattice site. This will ordinarily be one chain 
backbone atom plus the side groups attached to it as long as the 
latter are sufficiently small. 

11 The assumption of equal energies for the z - 2 higher energy 
orientations is made to simplify the presentation and to reduce the 
number of intramolecular energy parameters to one, that is '2-€1 

(the separate absolute values of " and '2 will not be required). 
The energy, '2, assigned to the higher energy orientations may be 

conceived as an average over the z- 2 actually disparate values. 
None of the qualitative conclusions of this paper are affected by 
our use of this assumption. Except for the specific heat, none of 
the quantitative results are significantly affected as long as the 
disparity in the energies of these (z- 2) higher energy orientations 
does not exceed 30% of the difference between their average value, 
'2, and the energy of the lowest energy orientation, €I. 

12 The total number of bonds from which this fraction "flexed," 
f, is calculated is, of course, (x-3)nx, rather than xnx , since 
"flexing" of the first two bonds of each molecule can be effected 
without changing the conformation and, therefore, the energy 
of the molecule. 
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nonbonded but nearest neighboring segments, Sx' is the 
fraction,t3 [(z' - 2)x+2Jnx/[(z' - 2)x+2Jnx+z'no, and 
z' is the coordination number of the "best" lattice char­
acterizing the amorphous packing of the system of 
segments and holes. 

For the lattice model to be self-consistent it is not 
necessary for z' and z to be equal, as has been assumed 
heretofore. It is necessary, however, for each of the 
z-l locations which are permissible (i.e., of low intra­
molecular energy) for a segment i of molecule j after 
segments i-1, i- 2, and i-3 of the same molecule have 
been located, to be among the set z' -1 allowed by the 
lattice structure. Thus, these z-l possible locations 
for segment i and the sites occupied by the previous 
i-1 segments of the chain, and in fact all sites which 
the chain could conceivably occupy after its general 
location and orientation are specified by location of its 
first three segments, are members of a lattice of coordi­
nation number z which is a sublattice of that of coordi­
nation number z'. Furthermore, since molecule j could 
have been located and oriented, by location of its first 

three segments, anywhere in the major lattice of coordi­
nation number z', every site of the latter must be a 
member of a sub lattice of coordination number z. 
Of course, the superposition of all the sub lattices of 
coordination number z is the major lattice of coordina­
tion number z'. 

A particularly useful example is the set of tetrahedral 
sub lattices of coordination number 4 which add up to a 
body centered cubic lattice of coordination number 8. 

Since the best lattice for an individual polymeric 
chain containing carbon atoms in its backbone is the 
tetrahedral lattice, we will use z=4 in our numerical 
calculations. On the other hand, in the absence of any 
specific information concerning the best value for z' 
in a polymeric system, we simply use z' = z, rather than 
carry z' along as an extra parameter. 

The thermodynamic properties of this system can be 
found by consideration of a canonical ensemble of such 
systems and evaluation of the resulting partition func­
tion. It is convenient to group together all states of the 
same energy in writing the partition function, 

Q= Wi" TV(j,no) exp { 
W=l 
/.110 

[f(x-3)nx~2+ (1- f) (X-3)nx~lJ+zanoSx/2}. 

kT 
(3) 

TV(j,no) is the total number of ways we can pack the nx 
x-mers on the lattice of xnx+no sites when the total 
number of "flexed" bonds in each arrangement is 
f(x-3)n x. If TV were to be calculated exactly it would 
be unnecessary to express explicitly the condition 
[TV (j,no) = 1] for the lower limit, to the values of f and 
Ilo over which the summation is taken, since the dis­
crete function, TV (j,no) could only assume integral 
values (including zero). However, the analogous quan-

tity in the case where no represents a number of solvent 
molecules, rather than a number of holes, has been 
evaluated approximately as a function which runs from 
o to 00 by Flory,4 and we wish to use his result. The 
values of TV which are less than unity correspond to no 
states of the system at all and must be discarded. 

where 

and 

Q' = £"'0 TV (j,no) exp { 
j,no 

Q" = ~1 TV (j,no) exp { 
w=o 
/,no 

To avoid the difficulty presented by the lower limit 
we write Q in the form 

Q=Q'-Q", 

[j(x-3)nx~2+ (1- f) (X-3)nx~1]+zanoSx/2}, 

kT 

[f(x-3)nx~2+ (1- f) (X-3)nx~lJ+zanoSx/2}. 

kT 

(4) 

Now, since Flory's4 expression for TV is essentially14 

{ 
[(z- 2)x+ 2Jnx+zno} 

(xnx+no) !zxnx 2 !(z-l)nx(z- 2)f (x-3) nx[ (x- 3)nxJ ! 

TV=--------------------------------------~----

(no) ![(xnx+no)z/2J !2xnx(nx) ![(1- f) (x-3)n x ] ![f(x-3)nxJ! 
(5) 

13 E. A. Guggenheim, Proc. Roy. Soc. (London) A183, 2~3 (1944-1945).. ... 
14 Flory's expression actually differs from our Eq. (5) III two respects: first, slllce he \yas concerned With solutIOns but not WIth 

thermal variations of volume, his expression contains a number, nl, of solvent molecules III I?lace?f o~r nUI?ber, no, of hol~s; second, 
his expression is the result of use of the fraction (No--:xi)/No for the e:"pectancy that a speCIfied site IS avaIlable to a ~halll segment 
after i molecules have already been placed on the lattIce, whereas ours IS the result of use of the more accu.rate eXl?resslOn, (NO-Xi)/ 
[No-2(x-1)i/z], originally used by M, L. Huggins, Ann. N. Y. Acad. Sci. 43, 1 (1942). In these expressIOns No IS the total number 
of lattice sites. 
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Q' may be factored, 

{ 

(xnx+no) !z",n${ [(Z-z)x~z]n,,+zno} !(z_1)n~ exp ( _ za~~",)} 
Q'= L----------------

no (no) ![(xnx+no)z/2] !Zxn$ 

{ 

(z-Z)/(x-3)n x[(x-3)n.]! exp[- (1- j)(X-3:;El- j(X-3)nXE2]} 

X L =J.I.'X', (6) 
f [(1- j)(x-3)nx] ![j(x-3)nx] !(nx)! 

where A' represents the factor which is summed over j, 
and P/ the factor which is summed over no. 

The factor A' is easily evaluated. Recognizing that 
each term of A' is a term of the binomial expansion of 
[exp( - el/kT)+ (z-2) exp( - edkT)]nx multiplied by a 
common factor, we get 

[exp( -et!kT)+(z-2) exp( -edkT)]nx 
~= . m 

(n,,) ! 

For the "free energy" derived from A', we have 

F'I,,= -kT InA'. (8) 

We may now show that the maximum term of A', 
A'max, is an excellent representation of A' itself. Differen­
tiating the generic term of A' and equating to zero we 
find 

j 'max=(z-2) exp[ -(ez-el)/kT]/ 
1+(z-Z) exp[ -(E2-El)/kT] (9) 

for the most probable value of j obtained from Q'. 
Substituting this expression for f in the generic term 

of A' to get A'max, forming F' A'max = - kT In (A'max) and 
comparing with F'I" we see that 

(
FI A'm"",- F' A') 

lim =0. 
11.;--+00 nx 

(10) 

A similar treatment of p/ is not possible since (1) 
the sum over no is intractable and (Z) the expression for 
n'Omax, the most probable value of no derived from Q', is 
transcendental and involves n' o max only implicitly: 

In(Voz/Z-l/Soz/2)- (zaSi/ZkT) =0. (11) 

Nevertheless, it may be seen by numerical inspection 
that the term in ,/ involving n'Omax makes the only 
significant contribution to ,/ just as the term involving 

F >T2= - kT InQ' = - kT InQ'max 

I'max makes the principal contribution to A'. Thus 

(F'I"max- F'I") 
lim =0, 

nz-+ OO nx 
(1Z) 

where the symbols F'JJ'max and F'JJ' have a significance 
which is parallel to those of F' A'max and F' A'. 

Furthermore, 

In (Q'max) = In (A'm ax,tt'm ax) ::;lnQ::;lnQ', (13) 
and 

In (Qmax) ::; InQ ::; InQ', (14) 

if the maximum term, Q'rnax, of Q' is also the maximum 
term, Qmax, of Q, a condition which is true if the asso­
ciated value of W in the former (i.e., W'max) is greater 
than unity, so that Q'max does not appear in Q". 
Therefore, we have 

Fmax= -kT In (Qrnax) ~F= -kT InQ~F' 
= -kT InQ' (IS) 

as long as W' max ~ 1. Clearly then 

(F-F') (Fmax-F) 
lim -- =0, lim =0, 

nz-400 nx nz-i'Q!';) nx 
(16) 

so that F' and Froax are both valid expressions for the 
free energy when the maximum term of Q' is a term 
allowed in Q. 

Since W'max is a monotonically increasing function of 
T, we may say that these expressions for F are valid 
for all T~ T 2, where Tz indicates the point where 
W'max=l. 

Henceforth we will replace the superscript, " and 
the combination of a superscript, " and a subscript, 
max, on the symbols representing expressions for 
thermodynamic variables with a subscript, > T2, to 
indicate the region of validity of the corresponding 
expressions. 

We have now obtained the results, 

[ 

{
[(Z-Z)x+Z](Z-1)} 

(Z-Z) (Vo) (no) (VOZ/2-1) In Z 
-kTxnx -- In - + - In -- +--------

Z So xn", SOZ/2 x 

+(X-3) In[e-nlkT+(z-Z)e-'2IkTJ- aznoSxJ. (17) 
x ZkTxn 



NAT U REO F THE G LAS S T RAN SIT ION AND THE G LAS S Y S TAT E 377 

Below this temperature, T z, we must use another method to determine the maximum term allowed in Q 
(absent in Q"). For this purpose we inspect the ratio, r, at any T ~ T z, of the term which is the maximum one at 
T 2 to any other allowed term, 

( 
1 )exp[ -E(JTz,nOT2)/kT] ( 1 ) (exp[ -E(JTZ,nOT2)/kT])TIT2 

r= W(h,nol) exp[ -E(h,nol)/kT] > W(h,nOl) exp[ -E(h,nOl)/kT] 

since W(h,nol»l (allowed term). fT2 and nOTz are, 
of course, the expectation values given by Eqs. (9) 
and (11) for f and no at the temperature T 2• Thus the 
ratio of the term which is the maximum one at Tz to 
any other allowed term is even larger at a temperature 
less than Tz than it is at Tz. This term, for which W = 1, 
is, therefore, an even more accurate representation of 
the total partition function, Q, at these lower tempera­
tures than it is at T 2• 

We may now write for the free energy below T 2, 

(1) exp[ - E(JTz,ttOTz)/kT2] 

-->1, (18) 
W(h,nOl) exp[ -E(h,nOl)/kT2] 

ZIXno TzSx T2 
F <Tz= -kT In[Qmax(JT2)] 

2 

+ f T2 (x- 3)nx~2+ (1- f Tz) (x- 3)nx f l. (17 A) 

The two expressions, (17) and (17A), for the free 
energy are, of course, equal at T z, 

lim (F >Tz(T»= lim (F <T2(T). (19) 
T~T2 T-T2 

For the entropy, S, we have 

[ 
{

[(Z-2)X+2J(Z-1)} 

aF >Tz (Z-2) (VO) no (VOZ/Z-l) In 2 
S>T2=---=kxnx -- In - In -- + 

aT 2 So xnx SozlZ x 

S <T2= -aF <Tz/aT=O, (20A) 
and 

(21) 

This temperature T2 may readily be obtained from Eq. (21), with the substitutions afforded by (20), (20A), (9), 
and (11). The result is, 

{
[(Z-2)X+2](Z-1) l 

(
Z-2) (VO) no (VOZ/Z-l) In 2 f 

0= - In - +-In -- +--------
2 So xnx SO·/2 x 

where Vo and So are subject to Eq. (11). We see that T2 
is a function of the flex energy, €2- ~l, the hole energy, 
IX, and the molecular weight, x (degree of polymeriza­
tion). 

Since the functions F and S are continuous functions 
of Tat Tz [Eqs. (19) and (21)J, the thermodynamic 
system energy, U=F+TS, is also continuous at T 2. 

The volume of the polymer phase is 

V>T2=C(T)[xn,,+no(T)J, (23) 

V <T2=C(T)[xn,,+no(T2)], (23A) 

where C(T) is the volume of a lattice site at tempera­
ture T. no(T) and no(T2) are determined by application 
of Eq. (11). 

We note that the volume above Tz is independent of 
the flex energy, ~2- ~l. Below T2, however, the volume 
is affected by the value of T 2, which in turn is a function 
of the flex energy as well as hole energy and molecular 
weight. Of course, the volume is also a continuous func­
tion at T 2• 

On the other hand, since these "first-order" thermo­
dynamic functions, F, S, U, and V, are described by 
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different analytical forms in the two temperature regions, their first temperature derivatives, the "second­
order" thermodynamic functions, are discontinuous at T 2• 

For example, using Eqs. (11) and (23) we find that the thermal expansivity is given by 

( 
Za ) -- VoSl 

2kTZ aCjaT 
-----------+---, 

za5oS,,2 C 
(24) 

z5,,/2---- (zI2-1) V x 

(
1 av) _ aClaT 
-- ----. 
V aT <T2 C 

The expressions for the specific heat, C P, are also 
readily shown to be unequal at T z• We have, therefore, 
an Ehrenfest second-order transition! at the tempera­
ture T z, given by Eq. (22). 

Let us follow a real polymer system through the 
point, T 2, where the configurational entropy, 5, is zero. 
At high temperatures 5>0, there being many ways for 
the molecules to be packed together in the bulk phase. 
At these temperatures the molecules do not prefer any 
one molecular conformation over any other and can fit 
themselves into the available tubes of empty volume 
(x contiguous empty lattice sites per molecule). As we 
cool the polymer phase, the molecules have less energy 
to share and two processes occur: (1) low-energy mo­
lecular conformations begin to predominate (small 
fma:x.), and (2) the volume (nOmax) decreases. The 
number of ways in which the molecules may be packed 
in the bulk phase is reduced since the tubes of empty 
volume required by the molecules must now begin to 
satisfy stringent geometric requirements, (x empty 
lattice sites which are now contiguous in a definite 
geometric arrangement for each molecule). As we lower 
the temperature further, the polymer system reaches 
a point, T 2, where (amorphous) molecular packing 
would be impossible if these two processes continued. 
The system remains, therefore, in (one of) its configura­
tion(s) of lowest permissible energy, i.e., the "ground 
state" of amorphous packing. 

This "ground state" may of course be degenerate. 
Had we used an exact method for evaluating W, we 
might well have found this to be the case. In our ap­
proximate treatment we found it convenient to use 
W = 1 as the lower limit to the summation, (3), and 
therefore W max= 1 as the criterion for T 2, but use of 
reasonable (small compared to xnx) values of the de­
generacy of this ground state15 would make a negligible 

15 There are two possible types of ground-state degeneracy: the 
first arises from the possibility that the lowest values of f and no 
which yield any mode of packing the chains on the lattice at all 
actually yield more than one mode; the second arises from some 
trivial characteristic (for example, location of nuclear isotopes) 
which distinguishes several configurations among one mode of 
packing. The second type is trivial because it affects higher energy 
levels and the ground level in the same way, and thus gives rise 
to only a temperature independent entropy of mixing and has no 
effect at all on the volume or energy. It may be neglected in the 
evaluation of W(j,no), and therefore S>To if it is also neglected 

kT 

(24A) 

change in the value obtained for T 2• Strictly speaking, 
any of the system states may still be occupied, the rela­
tive occupation probabilities in our canonical ensemble 
being given by the terms of Eq. (3). However, as has 
been demonstrated, only a few of the states occur with 
a nonnegligible probability. 

Furthermore, the (free energy) barrier restricting 
flow of a system from one of these states (configura­
tions) to another is very high in the neighborhood of T2 
and at all temperatures below T2 because, in this region 
(of temperature), the few states that could conceivably 
occur are widely separated in phase space, and proceed­
ing from one to another involves a considerable change 
in the topology of the molecular entanglements. Thus 
we may expect the system to respond only sluggishly 
to any change in any of the external forces applied to 
it in this temperature region. Relaxation times charac­
terizing viscoelastic and dielectric response should 
become very long as T2 is approached from above. 

III. COMPARISON OF THE SECOND-ORDER 
TRANSITION WITH THE GLASS 

TRANSITION 

We wish to compare the consequences of the fore­
going equations with experimental results. For this we 
assume that our second-order transition temperature, 
T 2, may be identified with the glass transition tempera­
ture, T G, which is observed experimentally. Hence­
forth, we replace Tz in the previous equations with T G• 

We discuss first the mono disperse phase of pure 
x-mers, to which all the equations of Sec. II apply 
directly without any extension or modification, and 
then proceed to a discussion of polydisperse systems 
and solutions. 

A. Monodisperse Phase of Pure X-Mers 

In order to apply the equations of Sec. II to a par­
ticular material we need to know ex and (€2-€!) for 

in the specification of the lower limit to W, and there fore S <To, 
without affecting the location of Tz [Eq. (22)]. The degeneracy 
arising from the distinguishability of atactic molecular chains is 
assumed to be primarily of this second type and is thus neglected 
in Sec. III. 
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that material. a is easily determined by 

and Eq. (24). (€2-€l) is easily obtained from Eq. (22) 
and the experimental value for the glass temperature. 

If we wish to predict volume changes above T a, we 
must also have information concerning C. Since 

hm --- = hm ---. (ac/aT) . (ac/aT) 
T~TG C T~TG C ' 

(26) 

we may expect that the expression, aC/aT/C=con­
stant, which describes C well below Ta,l6 may be used 
as a guide to extrapolation of C values through and 
above To. 

The following quantities have been found experi­
mentally by Fox and Floryl7 for polystyrene of mo­
lecular weight 85000 (x= 1640). 

lo~ [( ~ :;) Ta+ o- (~ :;) Ta-J 

= 2.9X 1O-4;oK. (27) 

(~ av) =2.2XlO-4;oK. 
V aT T<Ta 

TG=373°K. VTG=0.969 mljg. 

By use of Eqs. (11), (22), (23), and (24) we get 

(28) 
k 

xn"C=0.86274 exp(2.2XlO-4T) mljg. 

A plot of the glass temperature as a function of 
molecular weight (or x) affords a good test of the theory 
(and the hypothesis, T 2= To) because the glass tem­
perature, not being directly dependent on either the 
internal vibrational degrees of freedom of each molecu­
lar conformation or the lattice site size, (C), is a func­
tion of only the principal parameters of the theory, 
(€2- €l) and a. This plot is shown in Fig. 1. Remem­
bering that at extremely high x, not shown on the graph, 
the theoretical and experimental values of To coincide 

16 The equation, aC/aT=constant, works equally wei!. 
17 T. G. Fox and P. J. Flory, J. App!. Phys. 21, 581 (1950); 

J. Polymer Sci. 14,315 (1954). 
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. FIG. 1. Glass transition temperature of polystyrene as a func­
tIon of molecu~ar weight (in units of x). The upper theoretical 
curve was denved with use of the "Huggins fraction"'4 [and 
therefore Eq. (5)], the lower one with use of the "Flory frac­
tion."" The circles are the experimental data of Fox and Flory.'7 

(determination of €2- €l at x= 1640, i.e., molecular 
weight of 85 000), we realize that the agreement dis­
played at low x is startling. Furthermore, the shape of 
this curve is quite insensitive to a as long as a is not 
absurdly low, so that an almost equally good fit to the 
experimental points can be obtained with any reason­
able a on adjustment of the one parameter, €2- fl. In 
fact, fairly good agreement can even be obtained if 
holes are neglected entirely by use of infinite a. The 
value of a used in the curve shown was, of course, 
determined from the independent quantity expressed 
in Eq. (24), as already described. 

Now the values of (€2-€l) must themselves obey 
certain criteria. They must, first of all, be reasonable 
in the light of studies of hindered internal rotation in 
simple molecules. Then too, they must be greater for 
chains which are known to be stiff than for chains 
which are known to be flexible from independent experi­
ments such as light scattering investigations of mean 
square (end-to-end) lengths in solution. A survey of the 
literature for values of glass temperatures of polymers 
and calculation of the values of (€2- €l) from these1& 

shows that these conditions hold, apparently without 
exception. Sample values of (€2- €l) are 1.44 [kcalj (mole 
of segments)] for polymethyl methacrylate, 1.43 for 
polystyrene, 1.16 for polyvinyl chloride, 1.15 for 
polyvinyl acetate, 0.97 for polyvinylidine chloride, 
and 0.76 for polyisobutylene. The pair, polyvinyl 
chloride and polyvinylidine chloride is interesting. The 
introduction of the second chlorine atom in the monomer 
unit of polyvinylidine chloride certainly raises the 
absolute values of the energies associated with all the 
various angles of rotation around a given chain bond 
(i.e., of both the potential energy minima and the 
potential energy barriers between minima), but at the 

18 Since we are only concerned here with the approximate values 
of <2-<1 and their variation among the various polymers and 
since TG is relatively insensitive to a, we have used a= 00 i~ the 
calculation of these values of <2 - E1 from T G. 



380 J. H. GIBBS AND E. A. DIMARZIO 
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FIG. 2. Theoretical variation (the curve) of specific volume with 
temperature for polystyrene of molecular weight 85 000 and the 
experimental points (the three circles) of Fox and Flory,.17 

same time it lowers the value of the difference, f2- €1, 

between the energies of the "best" rotational positions 
(the potential energy minima). 

In cases where the values of (E2- El) are nearly alike 
for two linear chains of the same x, the values of the 
"free volume," no, may determine which has the higher 
glass temperature.19 According to the present theory, 
then, certain of the various hypotheses relating free 
volume and glass temperature20 may be true in a 
restricted sense (however, see below). 

The extensive dilatometric studies of the variation 
of specific volume with varying temperature and vary­
ing molecular weight17•21 provide another test of our 
attempted identification of T2 with TG• A curve repre­
senting the variation of V with T is shown in Fig. 2. 
The most interesting thing about the plot is the definite 
(concavely) upward curvature, which arises from the 
variation of no/xnx with temperature. This strongly 
suggests that a straight line should not be used to 
represent the experimental data.22 

Curves of V vs x for two temperatures are shown in 
Fig. 3. They show the right qualitative behavior but 
give specific volume values for low molecular weights 
which are lower than the corresponding experimental 
values. The theoretical curve pertains to mono disperse 
systems or, as we shall see below, polydisperse systems 
whose number average molecular weights are given on 
the abscissa. The experimental measurements were 
made on samples which were obtained by fractionation 
and whose "viscosity average molecular weights" are 
given on the abscissa. The theoretical curve also refers 
to perfectly homogeneous polymer chains, whereas the 

19 S. S. Rogers and L. Mandelkern, in J. Phys. Chern. 61, 985 
(1957), have recently proposed that the free volume is the prin­
cipal factor responsible for the variation of T G in the poly-en-alkyl) 
methacrylates, for which light scattering studies indicate roughly 
equal chain stiffnesses. 

20 A collection of appropriate references is given in reference 19. 
21 K. Ueberreiter and G. Kanig, J. Colloid Sci. 7, 569 (1952). 
22 Fox and Flory17 have suggested this on observation of their 

experimental data on polystyrene. 

polymer chains involved in the experimental study had 
end groups which were slightly different from the other 
segments. It should also be noted that the data of 
Ueberreiter and Kanig,21 presented in Fig. 4, suggest 
somewhat lower values for the specific volumes at low 
molecular weights. 

The upswing in specific volume at low molecular 
weights has generally been attributed to a difference 
between the length of a covalent bond and the length 
of a "van der Waals bond," since the process of chopping 
a polymer chain into two shorter chains involves the 
introduction of a "van der Waals bond" at the expense 
of a covalent bond. However, that degree of upswing 
which is exemplified by the theoretical curve in Fig. 3 
is achieved without invocation of this effect. 

The plot given in Fig. 4 of the specific volume at the 
glass temperature V TG versus the value of the glass 
temperature for different molecular weights of poly­
styrene is quite illuminating. The slope of the theoretical 
curve is not simply the expansion coefficient of poly­
styrene in the glassy state. Thus T G, insofar as it can 
be identified with T2, is not characterized by a particular 
value of the "free volume," no. The value of no at and 
below T G is greater for the polystyrene fractions with 
high molecular weight and, therefore, high T G than it is 
for those of low molecular weight and low T G. 

The configurational entropy plays, of course, a 
central role in the theory, since it is simply related to 
the number of configurations, W. For this reason we 
show a plot of its theoretical variation with temperature 
(Fig. 5), even though there are no experimental data to 
be presented for comparison. The dashed line is the 
result obtained if the formula, S > TG, is used (incor­
rectly) below T G. If, of course, the identification of 
T2 and T G is valid, this dashed line is the (invalid) 
theoretical counterpart of Kauzmann's extrapolations 
through and below T G of the experimental data ob­
tained above T G. The inapplicability of S > TG in this 

IX" 
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. FIG. 3. Theoretical variation (the curves) of specific volume 
With molecular weight (in units of x) for two temperatures, 
14poC and 217°C, and the corresponding experimental data 
(c!rcles) of Fox and Fl.ory. The upper circles were actually ob­
tamed from a curve whIch best fits the experimental data. 
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FIG. 4. The theoretical relation (the curve) between the specific 
volumes at their glass transition temperatures of polystyrene 
samples of varying molecular weight and the glass transition 
temperatures, compared with the corresponding experimental data 
of Fox and Flory,11 and Ueberreiter and Kanig.21 

region is, then, the resolution of Kauzmann's negative 
(configurational) entropy paradox since this negative 
entropy is not obtained for S <TG' 

Specific heat data are available in the cases of 
polystyrene23 and polyisobutylene.24 However, the 
specific heat is sensitive to any disparity in the energies 
of the (z- 2) possible high-energy orientations of each 
chain bond, so that the assumption that a single, aver­
age value, t2, may be used for them all affects adversely 
the quantitative agreement which may be obtained 
between theoretical and experimental results for this 
property.25,26 

Nevertheless about 60% of the magnitudes observed 
experimentally for the specific heat discontinuities of 
these compounds at their glass temperatures may be 
obtained theoretically with this assumption, the value 
of (t2-El) used being, as before, that which locates TG 
properly. It may be shown that use of this assumption 
yields a lower limit to the magnitude of the specific 
heat discontinuity. 

23 K. Ueberreiter and S. Nens, Kolloid-Z. 123,94 (1951). 
24 G. T. Furukawa and M. L. Reilly, J. Research Natl. Bur. 

Standards 56,285 (1956). 2. Furthermore, even if these energies are sufficiently close to­
gether for an average to be acceptable, it is not the same average 
as that which determines the glass temperature. Therefore we still 
should not expect our value of ('2 - El,) determined from the glass 
temperature, to give the correct value for the specific heat dis­
continuity. 

26 If the "potential energy well" whose bottom is '2 has a shape 
(force constant) different from that whose bottom is fl, the con­
tribution to the specific heat of bond librations in these wells 
is also discontinuous at T G. In such a case this discontinuity would 
also have to be evaluated if good agreement with experimental 
results were desired. 

Furthermore, the qualitative features of the specific 
heat behavior above and below T G are given correctly 
by the theory even with this assumption . 

If this assumption is removed, and allowance is made 
for the inequality of the energies of the (two) higher 
energy bond orientations, the whole configurational 
specific heat curves can be fitted quantitatively.27 

B. Polydisperse Systems and Solutions 

When all the molecules of the system do not have the 
same chain length, x, the evaluation of the partition 
function may be carried out by the same method as in 
the monodisperse case but is a bit more tedious though 
no more difficult.28 A particularly simple result may 
easily be obtained when all the molecules have a chain 
length greater than two, however. This relates the 
thermodynamic functions of such a polydisperse sys­
tem, containing ni i-mers where i runs from 3 to 00, 

to those of a monodisperse system of n;t x-mers, the 
"number average" chain length, X, being defined by 

where 

I 
I 

I 

/ 
I 

I 

co 

x=E ini/n!&, 
i=3 

(29) 

(29A) 

L-~3~,o~----~.~Oo~-----.~5o~---~o----------~ 
T I"K) 

FIG. 5. Configurational entropy (of polystyrene of X= 00) as a 
function of temperature. 

21 To fit the whole curve, rather than just the discontinuity 
at T G, the contributions to the specific heat of intramolecular 
vibrations (and librations) must be estimated. This is best done 
by appropriate extrapolation of the specific heat curve found 
experimentally below T G (where there is no configurational specific 
heat) to temperatures above T G. 

28 In the mental process of feeding molecules into the lattice, 
implicit in the Flory counting procedure, it is convenient to feed 
in molecules of the same degree of polymerization in succession, 
proceeding to another degree of polymerization only when these 
have been exhausted; this ensures the grouping of factors which 
permits simplification of the expressions obtained. 
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To see this we evaluate the intramolecular energy as 

00 00 

E= f L (i-3)n;€2+ (1- f) L (i-3)ni€1 
i=3 i=3 

the intermolecular energy as 

<I>=zano.5'x/2, 
where 

L [(z- 2)i+ 2]n; 
; [(z- 2)x+ 2]nx 

(30) 

(31) 

L [(z-2)i+2]ni+ znO [(z-2)x+2]nx+ zno 
, 

; 

and the number of configurations, W(j,no' .. ni' . ·i· .. ) 
as29 

(nl) !(no)! accounting for the number of ways the 
ni solvent molecules and no holes may be assigned to 
the nl+nO sites which remain empty after all the poly­
mer molecules have been placed on the lattice. 

Alexandrov and Lazurkin30 have studied the plas­
ticization of polystyrene by styrene monomer. For this 
solvent (plasticizer) i= 2. The expression for the second­
order transition temperature in this system is 

_ [(Z-2) (no) (VOZ/2-1) O=xni - In(Vo/50)+ = _ In --
2 xn; 5 0

z/2 

In{[(z- 2)X+2](Z-1)/2}] 
+ +~-~~ x 

00 (nx) ! 
W(j,no" ·n;·· ·i·· ·)=W(j,no,n-x,x) .--- (32) +[nnn(n~)- L n,!nni]-n2In(z-1), (33) 

00 

II (ni) ! 
i=3 

Thus, except for an ordinarily small correction which 
accounts for an entropy of mixing of the various chain 
lengths, the thermodynamic properties in this case of a 
polydisperse system depend on the variables of the 
system in the same fashion as in the previous case of a 
monodisperse system with the number average molecu­
lar weight now replacing the single molecular weight 
encountered before. 

Ueberreiter and Kanig2I have, in fact, discovered ex­
perimentally that the glass temperature and specific 
volume of polystyrene samples are functions of the 
number average molecular weights of the samples. 

When a polymer sample is dissolved in a solvent of 
low molecular weight for which i= 1 or i= 2, the situa­
tion is somewhat different. Although the contribution to 
the partition function of all species for which i;::: 3 is the 
same as that of an equivalent number, ni, of dissolved 
x-mers (x and nx still being defined by the sums, (29) 
and (29A), from i=3, to i=oo, the contribution of 
the low-molecular weight solvent remains to be evalu­
ated. If the solvent molecules are single site occupiers 
(i= 1) their effect on W is similar to that of an added 
number, nl, of holes,3,4 except for a factor (nl+nO)!/ 

29 This can be seen from the following considerations. Since (1) 
all segments of each molecule, except the first and second ones 
counted of each, enter into the counting of the number of con­
figurations of the system in the same way, (2) the first segment of 
each molecule enters into the counting in the same way as the 
first segment of each other molecule, and (3) a similar statement 
holds for the second segments of the molecules, systems with 
identical numbers of "first segments," identical numbers of 
"second segments," and the same total number of segments can, 
according to this counting procedure, be packed on the lattice in 
the same number of ways. Thus, this number of modes of packing 
depends on x and nx in the case considered here in the same way 
as it depended on x and nx in the monodisperse case. However, the 
fraction of this number of ways of packing on the lattice which 
are distinguishable from others will be a function of the molecular 
weight distribution according to the second factor of the right­
hand member of Eq. (32). 

where now 

and 

1==2 

00 00 

x=L ini/L ni, 
i=2 i=2 

00 

n~=L ni, 
i=2 

Vo= no!:rni+no, 5 0= zno/[ (z- 2)x+ 2]ni+zno. 

In Fig. 6 we show, along with the experimental data, 
a plot of this theoretical result as a function of % 
monomer (styrene), 100 (2n2)/xni, the values of (€2- €I) 
and a being the same as before. The lower curve is the 
result obtained when holes are neglected entirely 
(a= (0). It may be seen that these curves afford a good 
representation of the experimental data.3I 

This lowering of the glass temperature which accom­
panies the absorption of solvent has an interesting 
corollary. Since, just as in the previous case of a pure 
x-mer phase, the fraction of bonds flexed in the glassy 
state, f <Ta, is given by a formula identical to (9) except 
for the replacement of T with T a,32 f <Ta is dependent, 
through T a, on the variables, such as percent monomer 
and chain length, which influence T a. A similar state­
ment may be made concerning the number of holes in 
the glassy state, nTa. 

30 A. P. Alexandrov and J. S. Lazurkin, Compt. rend. acado 
sci. U.R.S.S. 43, 376 (1944). 

31 For monomer concentrations higher than 20%, the theoretical 
curve for which the effect of holes was considered behaves 
"badly". There are a number of reasonable explanations for this. 

32 The fact that this formula for f <TG and formula (9) itself for 
f>TG are still valid in this case of a solution may be recognized 
from the observation that the factor in the partition function which 
depends on chain stiffness (and, of course, the total number of 
segments) and from which the expression for f <Ta and f>TG are 
derived is unchanged and still separable from the rest of the 
partition function at and above TG • 
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Kargin33 has, in fact, discovered experimentally that 
not only is there a significant heat evolved on absorp­
tion of ethyl benzene by glassy polystyrene, but also 
that this heat is greater for polystyrene samples of 
high molecular weight than for those of lower molecular 
weight (and, of course, lower TG). Attributing this heat 
to the changes in f and no, we find the same qualitative 
behavior. The state of affairs as regards quantitative 
results is, as would be expected, similar to that found 
previously for the specific heat in the case of pure 
x-mers. 

The decrease in the (partial) molar volume of polymer 
on its absorption of monomer, which is expected theo­
retically because of the variation of no with n2, has been 
observed by Kovacs.34 

IV. DISCUSSION 

The results of Sec. III indicate that the glass transi­
tion is, in fact, the experimental manifestation of the 
second-order transition predicted theoretically in Sec. II. 

lt cannot be concluded unequivocally, however, that 
the value found for T G in an experiment of finite time 
scale is the same as that of T 2 • There is also the possi­
bility that the values of T G and T2 are strictly related 
(for T G measurements of a specified time scale, of the 
order of hours say) but not identical. If the relation be­
tween them were of the proper mathematical form, 
T G and T2 would still exhibit similar properties and 
vary in the same way with alteration of the values of 
the independent variables of the system (e.g., x, nl).35 
This possibility cannot be adequately treated in the 
absence of knowledge of that quantitative relation 
between them which is to be expected theoretically. 
We may hope that the qualitative understanding of the 

33 V. A. Kargin, J. Polymer Sci. 23,47 (1950). 
34 A. Kovacs, Compt. rend. 235, 1127 (1952)·235 1648 (1952) 
36 The relations TG-T2=a and T G/T2 =b ~her~ a and b ar~ 

constants, have been tried in place of the rel~tion T G= T2 in the 
proce~ures. of Sec. III. The ~ormer works fully as well as T G= To 
even If a IS as large as 50 C, but the latter is somewhat less 
successful. 
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FH? 6. The ,,:a.riation of gl~ss transition temperature with 
solutIOn composliJ.on .for solutIOns of polystyrene in styrene 
monomer. The denvatlOn of the upper theoretical curve allowed 
for the. effect of "holes" whereas that of the lower one did not. 
The pomts .are the data obtained experimentally by Alexandrov 
and Lazurkm. 30 

viscoelastic (and dielectric) sluggishness near T 2, which 
the present equilibrium theory affords, will lead to a 
quan~itative (nonequilibrium) theory for this sluggish­
ness m the near future. 
W~ know, however, that whatever the quantitative 

relatlOn between T G and T2 may turn out to be, it has 
the following qualitative property. T2 is the lower 
limit, observed in experiments of infinite time scale 
to the range of T G. If, as the present results of the quasi~ 
lattice model indicate, this lower limit does exist the 
existence of glasses is not dependent on kinetic 'phe­
nomena, and we may properly resuscitate the concept 
of the glassy state as a fourth state of matter. 
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