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Power-law scaling and fractal nature of
medium-range order in metallic glasses
D. Ma, A. D. Stoica and X.-L. Wang*

The atomic structure of metallic glasses has been a
long-standing scientific problem. Unlike crystalline metals,
where long-range ordering is established by periodic stacking
of fundamental building blocks known as unit cells, a metallic
glass has no long-range translational or orientational order,
although some degrees of short- and medium-range order do
exist1–3. Previous studies1–4 have identified solute- (minority
atom)-centred clusters as the fundamental building blocks
or short-range order in metallic glasses. Idealized cluster
packing schemes, such as efficient cluster packing on a cubic
lattice1 and icosahedral packing3 as in a quasicrystal, have
been proposed and provided first insights on the medium-range
order in metallic glasses. However, these packing schemes
break down beyond a length scale of a few clusters. Here, on the
basis of neutron and X-ray diffraction experiments, we propose
a new packing scheme—self-similar packing of atomic clusters.
We show that the medium-range order has the characteristics
of a fractal network with a dimension of 2.31, and is described
by a power-law correlation function over the medium-range
length scale. Our finding provides a new perspective of
order in disordered materials and has broad implications
for understanding their structure–property relationship,
particularly those involving a change in length scales.

Fractals are ubiquitous in nature. Unlike what they appear
to be at first glance, clouds are not spheres, mountains are
not cones, islands are not circles; instead, they are fractals5.
Characterized by self-similarity, scale invariance and fractal
dimension, a fractal geometry is the same ‘from near or from
far’, forming the missing complement to Euclidean geometry
and crystalline symmetry5,6. Fractals are also found in a variety
of condensed-matter systems including polymers, composite
materials, membranes, porous media, colloids and aerosols6–9.
The self-similar aggregates of gold nanoparticles in suspension
are, for example, a well-recognized class of microscopic fractals
manifested by a fractal dimension (Df) of 2.05 (ref. 8). As for
glass systems, aspects of fractals have also been suggested over the
years10–12. For instance, light-scattering experiments on superionic
borate glasses presented evidence of a crossover frequency between
phonons and fractons, or fundamental excitation of a fractal
lattice10–12. Borjesson et al.11 have used reverse Monte Carlo
simulation to analyse the neutron diffraction data of similar glasses.
Their simulation results suggested a fractal structure with an
upper correlation length of about 15–20Å, although Df could
not be determined owing to the limited number of atoms used
in the simulation. While the results from these early studies are
encouraging, there has been no direct evidence that links the
structure of a glass to a fractal network. Here, we present such
evidence for metallic glasses, which are made by rapid cooling
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of molten metals and represent an important class of complex
disordered materials.

The initial evidence of a fractal structure in metallic glass came
from the analysis of the diffraction peak positions. In a crystalline
metal or alloy, atoms are arranged periodically on a lattice and
the first Bragg peak in the powder diffraction pattern always
corresponds to the largest interplanar distance (d1 ∝ 1/q1, where
q1 is the first peak position in momentum transfer), for example,
d(111) in face-centred-cubic copper13.When scaling this linear length
(1/q1) with the atomic volume (va, see below), a power of 1/3 is
always obtained. This is also valid when scaling a strained lattice
constant under tension or compression, which is in fact the basis
of strain measurements by X-ray and neutron diffraction14. This
1/3 power law is therefore a direct consequence of the crystalline
long-range order in the three-dimensional Euclidean space. In a
molecular gas, where only short-range order (SRO) is present, 1/q1
is related to the interatomic distance following the well-known
Ehrenfest relationship15 and is thus expected to also obey the 1/3
power-law scaling with the molecular volume. In amorphous solids
such as a metallic glass, atomic correlations extend well beyond
SRO into the medium-range-order (MRO) regime, but the lack of
long-range periodicity makes the glass structure look ‘disordered’.
A signature of this ‘disordered’ structure is the ‘missing’ (or
‘smearing’ of) Bragg peaks from the diffraction pattern and, as
a replacement, the emergence of a few diffuse scattering haloes.
The first halo in such a pattern has been referred to as the first
sharp diffraction peak16 (FSDP). Indeed, in metallic glasses, the
first diffraction peak shows a typical full-width at half-maximum
of 0.4–0.5Å−1, much sharper than those at high q, the widths of
which are 1.4–1.8Å−1. It is therefore anticipated that the FSDP
carries significant information about order inmetallic glasses. Thus,
in what follows, we will concentrate our analysis on the FSDP.

Table 1 summarizes experimental values of q1 for a variety of
metallic glasses, determined from neutron and X-ray diffraction
studies in the present work and in the literature4,17–24. In the present
study, metallic glasses of ZrxCu100−x (x=35.5, 38.6, 44.0, 50.0, 54.5,
60.0) andZr53.7Cu28.5Ni19.4Al8.4 were fabricated usingmelt-spinning
and copper-mould casting, respectively. Neutron scattering
experiments of these glasses were carried out on the General
Purpose Powder Diffractometer at Argonne National Laboratory.
The structure factor S(q) (q = 4πsinθ/λ, where θ is half of the
scattering angle and λ is the neutron wavelength) and the reduced
pair distribution function, G(r)= (2/π)

∫ qmax

0 q[S(q)−1]sin(qr) dq,
where r is the distance and qmax is the maximum value of q for the
Fourier transform, were obtained by analysing the scattering data
as described elsewhere4. Also listed in Table 1 are atomic volumes
(va) determined from mass density (ρm) measurements, that is,
va = ρm/(NaM ), where Na is Avogadro’s number and M is the
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Table 1 |The FSDP position (q1,Å−1) for metallic glasses determined from neutron (labelled with an asterisk) and X-ray (labelled
with a dagger) diffraction measurements.

Metallic glass q1 ρ va q1 ·v0.433a Reference

Zr35.5Cu64.5
∗ 2.826 7.751 15.72 9.32 Present work

Zr38.6Cu61.4
∗ 2.801 7.673 16.07 9.32 Present work

Zr44.0Cu56.0
∗ 2.763 7.542 16.68 9.35 Present work

Zr50.0Cu50.0
∗ 2.719 7.408 17.35 9.35 Present work

Zr54.5Cu45.5
∗ 2.684 7.306 17.87 9.35 Present work

Zr60.0Cu40.0
∗ 2.656 7.227 18.42 9.38 Present work

Zr53.7Cu28.5Ni19.4Al8.4
∗ 2.675 6.824 18.20 9.40 Present work

Zr52.5Ti5Cu17.9Ni14.6Al10
∗ 2.658 6.629 18.30 9.36 Ref. 4

Zr54.5Ti7.5Cu20Ni8Al10
† 2.605 6.47 18.85 9.29 Ref. 17

Zr57Ti5Cu20Ni8Al10
† 2.602 6.54 18.92 9.29 Ref. 17

Zr58Ti4Cu20Ni8Al10
† 2.599 6.57 18.94 9.29 Ref. 17

Zr59Ti3Cu20Ni8Al10
† 2.597 6.59 19.00 9.29 Ref. 17

Zr60Ti2Cu20Ni8Al10
† 2.595 6.62 19.02 9.29 Ref. 17

Zr80.0Fe20.0
† 2.524 6.75 20.71 9.38 Refs 18,19

Zr76.0Fe24.0
† 2.535 6.78 20.27 9.33 Refs 18,19

Zr75.0Fe25.0
† 2.543 6.80 20.12 9.33 Refs 18,19

Zr73.0Fe27.0
† 2.562 6.84 19.83 9.34 Refs 18,19

Zr67.0Cu33.0
† 2.588 7.07 19.27 9.32 Ref. 20

Zr60.0Cu40.0
† 2.624 7.19 18.52 9.29 Ref. 20

Zr54.0Cu46.0
† 2.674 7.31 17.84 9.31 Ref. 20

Zr50.0Cu50.0
† 2.699 7.39 17.39 9.30 Ref. 20

Zr46.0Cu54.0
† 2.731 7.47 16.96 9.30 Ref. 20

Zr40.0Cu60.0
† 2.778 7.64 16.23 9.29 Ref. 20

Zr34.0Cu66.0
† 2.822 7.83 15.48 9.24 Ref. 20

Zr65Ni35
† 2.620 6.98 18.99 9.37 Ref. 21

Ti60Ni40
∗,† 2.910 5.96 14.57 9.28 Ref. 21

La62Al14(Cu5/6Ag1/6)14Ni5Co5
† 2.20# 6.190 28.36 9.36 Ref. 22

Mg65Cu25Tb10
† 2.52# 3.790 20.85 9.39 Ref. 23

Y55Al25Co20
† 2.23# 5.802 27.18 9.32 Ref. 24

La55Al25Co20
† 2.32# 6.373 25.03 9.35 Ref. 24

Pr55Al25Co20
† 2.35# 6.584 24.68 9.42 Ref. 24

Nd55Al25Co20
† 2.33# 7.343 23.76 9.19 Ref. 24

Gd55Al25Co20
† 2.36# 7.488 23.50 9.26 Ref. 24

Tb55Al25Co20
† 2.35# 7.560 23.71 9.26 Ref. 24

Dy55Al25Co20
† 2.42# 7.888 23.00 9.41 Ref. 24

Ho55Al25Co20
† 2.39# 8.157 22.51 9.20 Ref. 24

Er55Al25Co20
† 2.36# 4.863 23.03 9.18 Ref. 24

Also listed are mass densities (ρ,g cm−3), atomic volumes (va,Å3 per atom) obtained from mass density measurements, and q1 ·v0.433
a , which demonstrates the universal scaling relationship. q1 values

marked with a hash symbol were determined from digitized data.

molecularweight. It is noted that, as va decreases from28.56 to 14.57
(by ∼50%), q1 increases from 2.20 to 2.91 (by ∼30%). Plotting q1
versus va on a logarithmic scale revealed a scaling relationship, as
shown in Fig. 1. All data points fall on a line, despite the diversity of
metallic glasses ranging from binaries to quinaries. Although the
present study was undertaken for metal–metal glasses, a similar
scaling relationship seems to hold also for metal–metalloid glasses
based on a preliminary analysis of a rather limited data set. Linear
fitting of the data in Table 1 yields the following relationship,

q1 ·v0.433±0.007a = 9.3±0.2.

As discussed above, a power of 1/3 is expected when scaling
1/q1 with va for crystalline metals with long-range order and for
molecular gas with SRO alone. However, in contrast, the best
fit to the metallic-glass data yields a power of 0.433 ± 0.007,
significantly different from 1/3. This large discrepancy shows
that the metallic-glass structure is distinctly different from its
crystalline counterpart. We interpret this discrepancy as evidence

of a fractal network, with the fractal dimension given by
Df = 1/0.433 = 2.31. We notice that our observed Df of 2.31
in metallic glasses is comparable to the fractal dimension of
silica particle aggregates (2.27–2.65) determined by small-angle
scattering7, and to that of 2.56 for aggregating proteins9 and
2.05 for colloidal gold particles8. It is also noted that the Df of
metallic glasses is close to the fractal dimension of quasicrystals
(2.72 (ref. 25)), which exhibit a quasiperiodic long-range order
and are characterized by a hierarchy of atomic clusters26,27,
demonstrating the structural similarity between metallic glasses
and quasicrystals28.

In addition to exhibiting a universal scaling relationship, the
FSDP position also correlates closely with q21 and q22, the positions
of the second peak and its shoulder in S(q), as shown in the inset
of Fig. 2. In particular, for the ZrxCu100−x glasses, our neutron data
show that

q21/q1= 1.74±0.02,

q22/q1= 1.96±0.02,
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Figure 1 | Power-law scaling of the FSDP (q1) versus atomic volume (va)
for a variety of metallic glasses. Both q1 and va are in a logarithmic scale.
The solid line represents a linear fit to the data.

where q21 and q22 were obtained by fitting the second peak and its
shoulder in the S(q) using two Gaussian functions29.

Figure 2 shows the G(r) of a Cu64.5Zr35.5 glass, obtained by
Fourier transforming the S(q) (see the inset) terminated at a value
of qmax. Two cases have been investigated corresponding to qmax of
15.0 and 6.9Å−1 (indicated by the arrow in the inset), respectively.
It can clearly be seen that the G(r) profiles beyond the second
coordination shell (r > 6.2Å, indicated by the arrow in Fig. 2) are
essentially the same. Thus, the medium-range G(r) is determined
primarily by the S(q) in the q-range of less than 6.9Å−1, which
covers q1, q21 and q22. Because q1, q21 and q22 are related, this result
further demonstrates that the MRO is indeed embodied by the
FSDP, as has been noted byCargill30.We therefore conclude that the
scaling relationship of q1 in metallic glasses comes from the MRO.

Next, we demonstrate that analytically, the experimentally
determined atomic pair distribution function fits the description
of a fractal network. From G(r), the differential pair distribution
function, g (r)−1= (G(r)/4πrρ0) (where ρ0 is the number density)
was determined and is plotted in Fig. 3. The following discussions
follow closely the framework of a monodispersed colloidal system.
Colloids are small particles dispersed in a medium, usually fluid.
Colloids are a convenient tool to study particle packing31. Recently,
densified colloidal systems have been used to study glass transitions,
often with confinement as a tuning parameter32, and the structural
rearrangement of shear-transformation zones under applied load33.
If, in metallic glasses, the MRO is indeed described by packing
of quasi-equivalent clusters on a fractal network, then the cluster
number follows a power-law distribution, that is,N (r)∼ rDf (ref. 7),
where N (r) is the number of clusters within a radius r around a
given cluster. This leads to a differential cluster correlation function
of the form C(r)= gcluster(r)−1∼A/rD−Df , where A is a constant.
Following the work by Freltoft et al.7, which considers the fractal
structure of aggregating particles in a colloidal system, we can
express C(r) as

C(r)= (A/rD−Df)exp(−r/ξ)sin(q1r+φ), (1)

where an exponential cutoff function is used to account for
the finite cluster-size and cluster-entanglement effects6,7 and ξ

is the cutoff length. Here, a sinusoidal function sin(q1r + φ)
was introduced to describe the oscillatory correlation of the
experimental [g (r)− 1], with q1 being the position of the FSDP
and φ being the phase shift. As shown in Fig. 3, a good fit was
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Figure 2 | Correlation between FSDP and MRO. A comparison is made for
two reduced pair distribution functions G(r) of glassy Cu64.5Zr35.5 obtained
by Fourier transforming the experimental S(q) (see the inset) with two
termination values (qmax). The arrows indicate the onset of the third shell in
the main figure and qmax=6.9 Å−1 in the inset, respectively.

obtained to the experimental [g (r)− 1] with equation (1) in the
medium range of r from 6.5 to 25Å for a typical metallic glass
Zr35.5Cu64.5. In this fitting process, the value of D−Df was fixed
as 0.69 (= 3–2.31) as determined from Fig. 1. The best fit yielded
the following parameters: A = 3.2± 0.2, ξ = 4.00± 0.08Å and
φ = 0.23± 0.01. It is remarkable that equation (1), with a single
q1 value (2.826Å−1), can account so well for the experimental
[g (r)− 1] for r > 6.5Å. On the other hand, equation (1) failed
to describe [g (r)− 1] for r < 6.5Å. This demonstrates again that
fractal behaviour is only observed in the medium-range length
scale. We also attempted to determine D−Df directly by fitting
[g (r)− 1], but this proved to be difficult. Nevertheless, by fitting
to the amplitudes of the peaks and valleys of [g (r)− 1] using
equation (1) without the sinusoidal function, as described in the
Methods section and shown in the inset of Fig. 3, we obtained
a D−Df value of 0.67± 0.06 after averaging the fitting results
for six Zr–Cu glasses and two Zr-based bulk metallic glasses (see
Table 1). This value is consistent with what was extracted from
the power-law scaling of q1 (0.69± 0.04). The excellent fitting
results shown in Fig. 3 demonstrate that a power-law distribution
function given by equation (1) provides an adequate description
of the medium-range amorphous structure, confirming the fractal
nature of cluster packing in metallic glasses.

To understand the fractal aspect of metallic glasses, it is helpful
to examine the structure of a quasicrystal. The structure detail
of a quasicrystal was recently visualized for the first time with a
binary YbCd5.7 quasicrystal27. Here, the basic building block, which
comprises the bulk of the quasicrystal, is a rhombic triacontahedron
(RTH), as illustrated in Fig. 4 of ref. 27. The RTH units themselves
cannot fill the space, because of the local five-fold icosahedral
symmetry. Two other types of building block are required, the
so-called acute and obtuse rhombohedra, to fill in the gaps and
connect the RTH units. The incomplete space filling by the RTH
units leads to a number density that is dependent on r . In fact, as
pointed out earlier, quasicrystals are fractals with a dimension of
2.72 (ref. 25). In YbCd5.7, the RTH units form a hierarchical self-
similar structure, with an inflation factor τ 3, where τ [= (1+

√
5)/2]

is the golden ratio.
The cluster packing in metallic glasses can be understood in a

similar way. Inmetallic glasses, the fundamental building blocks are
solute-centred clusters, rather than individual atoms, with solute or
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Figure 3 |Demonstration of fractal packing with experimental [g(r)−1].
The experimental data were obtained for glassy alloy Cu64.5Zr35.5, and the
solid line is a fit using equation (1). The inset shows the best fit to the
amplitudes of the peaks and valleys of [g(r)− 1] that yields an estimate for
D−Df (see Methods).

minor atoms at the centre surrounded by solvent ormajority atoms.
Some of these clusters are tightly connected, as they share atoms at
vertices, edges or faces. In addition, it is also important to recognize
that none of the clusters in metallic glasses is perfect—they are
plagued by chemical and topological disorder. At the local level, the
clusters follow either cubic or icosahedral packing, as pointed out by
Miracle1 and Sheng et al.3. However, such kinds of cluster packing
cannot continue beyond the length scale of a few clusters, owing
to the five-fold icosahedral symmetry and chemical and topological
disorder. Our study shows that over themedium-range length scale,
the clusters are in fact connected via a fractal network with reduced
dimensionality. Regions between clusters are empty or occupied
by lone atoms that do not form clusters. The former is related
to the free volumes, whereas the latter could be termed as glue
atoms, as in quasicrystals, that connect the clusters. Because of the
chemical and topological disorder, space filling in metallic glass is
evenmore difficult than in quasicrystals. Presumably this is why the
fractal dimension of metallic glasses (2.31) is lower than that of 2.72
for quasicrystals.

It has been recognized that the apparently distinct properties
of metallic glasses exhibit striking correlations with each other34.
For example, the elastic moduli are related to the glass-transition
temperature35. On the other hand, diffraction patterns for metallic
glasses also look similar21,28,36. As the structure determines proper-
ties, these experimental observations already provide a strong hint
of some kind of structural commonality.

With the picture of cluster packing in mind, the diffraction
patterns from metallic glasses can be regarded as scattering from
highly correlated clusters, which is a product of the scattering due
to individual clusters and the correlation between the clusters,
respectively. The high-q portion of the diffraction pattern is
dominated by the scattering function of individual clusters (SRO),
as the correlation between clusters approaches unity. The low-q
portion of the scattering pattern is due to the correlation between
the clusters (MRO), which produces the FSDP. The scattering
contrast comes from the fluctuation in the cluster number density,
as a result of partial space filling by the clusters. The fact that the
diffraction patterns formetallic glasses have the same characteristics
and the scaling relationship demonstrated in this study show that
cluster packing in metallic glasses follows a common rule, that is,
self-similar packing on a fractal network.

In summary, the fractal nature of metallic glasses is revealed by
the power-law scaling of the FSDP with the atomic volume, and is
further verified by fitting the experimentally determined differential
pair distribution function with a cluster correlation function over
the medium-range length scale. This finding paves the way for
understanding the MRO in metallic glasses using well-established
mathematical tools developed for describing the structure and
dynamics in fractals10,37. The position of the FSDP, q1, characterizes
themedium-range correlation,which can be quite useful for gaining
insights into structural evolutions involving a change in length
scales. It would be interesting to examine, for example, how the
fractal network of solute-centred clusters responds to applied load.
From in situ synchrotron experiments, Poulsen et al.38 reported that
under a uni-axial load, the nearest-neighbour atomic shell exhibits
the stiffest response, whereas the responses from higher-order shells
are progressively softer eventually approaching that of the strain
gauges, suggesting that mechanical deformation is inhomogeneous
at SRO and MRO length scales. As we mentioned earlier, a
similar scaling relationship seems to hold also for metal–metalloid
glasses, despite the difference in atomic bonding and cluster
types. In fact, the diffraction patterns for metal–metalloid and
metal–metal glasses look very much similar. These experimental
observations suggest that fractal packing is a universal behaviour
for metallic glasses. Further study is needed to fully establish the
scaling relationship for metal–metalloid glasses, and to examine
the influence of atomic bonding and cluster types. The framework
of the present study will also find a wide range of applications
for exploring fractals in a broad field of disordered condensed-
matter systems.

Methods
Estimation of D−Df from correlation functions. A direct determination of
D−Df from fitting with equation (1) is difficult because it correlates strongly with
ξ and the parameter φ also needs to be determined. To eliminate the influence of φ
and to test the sensitivity of D−Df, we alternatively fitted only the amplitudes (h)
of the peaks and valleys of the correlation function [g (r)−1] over the r range of
7–∼ 25Å, with the function h(r)=A/rD−Df exp(−r/ξ). In the fitting process, we
set A, D−Df and ξ as fitting parameters. The use of a power-law function (rD−Df )
along with the exponential cutoff function leads to a much reduced χ 2 than that
with an exponential function alone. By fitting each set of the peaks and valleys
data obtained from neutron scattering experiments for six Zr–Cu glasses and two
Zr-based bulk metallic glasses, Zr53.7Cu28.5Ni19.4Al8.4 and Zr52.5Ti5Cu17.9Ni14.6Al10
(see Table 1), we determined an average value of 0.67±0.06 for D−Df, which is
consistent with theD−Df value of 0.69±0.04 obtained from analysis of the scaling
relationship for q1.
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