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1.1. INTRODUCTION

Equilibrium thermodynamics is a subject based on three basic
postulates, or laws, in which one derives relationships among the vari-
ous state functions such as internal energy E, entropy S, enthalpy H,
Helmbholtz free energy F, Gibbs free energy G, etc., and the state para-
meters temperature T, pressure P, volume ¥, mole fraction x, of com-
ponent i, etc. One can derive a number of useful relationships which
apply to surfaces.

The extensive thermodynamic properties of a solid will include
contributions which depend on the area (and perhaps the shape) of
its surface. These are normally (and justifiably) neglected in treating
properties of the bulk solid but are of considerable interest for our
present purpose. There are different ways in which the thermodynamic
properties of surfaces can be defined. For example, if we consider
an interface separating two otherwise homogeneous phases « and S,
the surface thermodynamic functions may be defined in terms of a
Surface phase or by introducing the concept of a dividing surface. In
the first method the system is considered to be one in which there are
three phases present—the two bulk phases and a surface phase: the
boundaries of the surface phase are somewhat arbitrary and are
usually chosen to be at Jocations at which the properties are no longer
varying significantly with position. The surface phase then has a
finite volume and may be assigned thermodynamic properties in the
normal way. With the method involving a single dividing surface,
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the surface contributions to the thermodynamic functions are defined
as the excesses over the values that would obtain if the bulk phases
retained their propertics constant up toan i maginary surface separating
thz two phases. We adopt the latter procedurs here and in the present
chapter we consider only one-component crystals.

In discussions of thermodynamic properties of any system, the free
energy functions generally play an important role since they can be
used for developing convenient criteria for equilibrium. Surface ten-
sion plays a similar role in thermodynamic treatments of surface prop-
erties, and we shall devote most of the present chapter to a discussion
of surface tension in solids. Much of the development follows that
for the case of simple liquids but with important modifications arising
from the dependence of solid surface properties on crystallographic
orientation and from the relatively low mobility of atoms in the solid
state. The first of these is important in determining the equilibrium
shapes of small crystals and the stability of planar surfaces with nor-
‘mals along particular crystallographic directions. The second leads

“"to a possible distinction between surface stress and surface tension,

whereas for liquids the two quantities are always numerically equal.
In this chapter we discuss also the £quilibrium configuration at the
intersection of interfaces and the effects of ciirvature of crystalline
surfaces.

12. ONE-COMPONENT SYSTEMS

Consider an interface between two phases a and B (solid-vapor,
solid-liquid, solid-solid, etc.) in a one-component system. We will
suppose the phases a and 8 to extend sufficiently far from the inter-
face that we may characterize them by their bulk concentrations c,
C? (moles/unit volume) as indicated in Fig. 1.1. For the purpose of
defining surface quantities we imagine a surface (DS, Fig. 1.1) 10 be
constructed separating the two phases and coinciding approximately
with the transition region between a and 5. We can then define any
extensive property P of the surface or interface by an equation of the
type

: Pt = P+ PP+ P, (1.1)
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F1G. 1.1. Variation of the concentration of a particular component across the

interface between two phases « and . C* and C? are the concentrations

of that component in the two phases at large distances from the interface.
DS is the dividing surface.

where P* and P’ are the values of the extensive quantity for the a
and B phases respectively if they continued homogeneous up to the
dividing surface. P, is the value of the quantity for the entire
system and P* the value of P to be associated with the surface. Defined
in this way it is clear that P*is to be regarded as the excess value of
P for the real system compared to that of the imaginary system con-
sisting of two homogeneous phases with an ideally discontinuous
change in properties at a particular mathematical surface. As examples
we may write

St = Sloﬂl-(s’+s’)s .

E* = Epu—(E*+E?), (12)

F* = Fyu— (F*+ P9)

for the surface excess entropy, internal energy, and Helmholtz free
energy respectively. Also a quantity which is of interest in connection
with adsorption and segregation phenomena is the excess amount
of material or excess number of moles n' 10 be associated with the
interface. This is defined as '

n = Mou—(n*+nf)
= Mot —(C*V*+CPV?), (1.3)
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where.n,, is the total number of moles in the entire system and n*
and »” refer to the « and B phases respectively; ¥* and ¥* are the
volumes of the two phases measured to the dividing surface and C*
and C” the concentrations (moles Per uait volume) in the homogene-

e no vanations in properties parallel to the interface. (We should
"7 * expect the results derived bere to remaio valid for nonplanar inter-
27 faces provided the radius of curvature is significantly greater than the
T width of the transition region.) The quantities in egns. (1.1)<(1.3) are
7 . then defined” with respect to a cylinder of unit cross-sectional area
7+ perpendicular to the interface and extending into the phases « and 8.
R The excess .umber of moles per unit area is generally denoted by I"
"© " and often referred to simply as the surface excess,

T Itisobviousthat.thevnlueohnysurfacepropertydcﬁned by the
.=". . above equations will-depend upon the choice of the location for the
T dividing surface. We will consider below a particularly convenient

.o choice.

The surfoce tension y may be defined as the reversible work in-
volved in creating unit area of new surface at constant tempera-
ture, volume, and total number of moles,

T . dw
- . y= lim %, a4
where dw is the amount of work associated with the increment dA

in area. .
Since at constant temperature and volume the work done is equal
to the change in Helmholtz free energy of the whole system

YdA = dF iy = d(F*+ F?)+ dF+
= p d(n*+n)+dF
=~Ip dA+f' dA

y==TIy, ‘ (1.5)

t To denote the valoes of thermodynamic functions per unit area of surface we
use lowercase letters, es. ¢, 5, ° represent the internal energy, entropy, and
Helmholtz free energy per unit area.

or



C ——— et g i 40

THERMODYNAMICS OF SURFACES 5

where u is the chemical potential and f? is the value of F’ per unit
area or, in other words, the specific surface free energy. We may note
from (1.5) that y is the surface density of the quantity (F— G) (usually
referred to as the {2 potential), a relationship which was used by Gibbs
for the defimuon of y. We shall use this definition in Chapter 2 in
connection with the composition variation near the surface of a bi-
pary solid. _

Since I" and f* were defined with respect to an arbitrary dividing
surface (heir individual values will depend on the choice of this sur-
face. However, y as defined by eqn. (1.4) is clearly independent of the
choice so that the surface tension has a unique value for any par-
ticular interface. Thus in general the surface tension and specific sur-
face free energy are not equal. This fact is of more importance in con-
nection with multicomponent systems since for a one-component
system it will in general be possible to choose the dividing surface
such that I' = 0. This is, in fact, the conventional choice for a single-
component system, and thus the surface tension and specific free
energy may be identified in this case.

Surface tension is a quantity which is directly measurable (see
Chapter 3), and evidently by measuring its temperature dependence
we may extract values of the surface (internal) energy and entropy,
Quanttes which will reflect the differences in binding and vibrational
motion of the surface atoms. Since

f*=e-Ts, where ' =-— (%')' r'

we obtain (for one component)

¢ =y=T (%). 16

The experimental data on liquids indicate in general that (8y/dT) is
negative which in turn implies a positive excess surface entropy. The
temperature coefficient of y for solids also seems to be negative al-
though the data on y as a function of T for solids are still rather sparse.
Such information would, however, be extremely valuable for testing

B: IPCS: 2,
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calculations, based on microscopic models, of the internal energy
and entropy contributions to the surface tension. The empirical rela-
tionship '

v =BpT-T) (.7

for the variation of y with T known as the E5tvés law is found to
hold quite well for many simple liquids. Here T, is the critical temper-
~ ature and 8 a constant characteristic of the material. In the absence
of a better model the surface tension of solids is usually also taken
to vary linearly with temperature. Some experimental data for copper
through the equilibrium melting temperature T,, are shown in Fig.
1.2. The scatter is clearly too great to allow a comparison of the inter-
nal energy- and entropy contribution to the surface tensions of the
phases, but the discontinuity of about 25% in ¥ at the melting point
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F1G. 1.2 Variation of surface tension of copper with temperature through the

melting point T,. Although there is considerable scatier in the data, the

discontinuity in y at the melting point is quite clear. (Data for the solid

from H. Udin, A. J. Shaler, and J. Wulll, Trans. AIME 188, 186 (1949).

(Data for the liquid from tabulationsin P. Kozakevitch, in Liquids: Structure,

Properties, Solid Interaction, ed. T. J. Hughel, Elsevier, 1965, and in D. A.
Belforti and M. P. Lopie, Trans. AIME 227, 20 (1963).)
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seems to be quite well established. In general the ratio of the surface
tension of the solid to that of the liquid at the meiting point appears
to be about 1.1-1.3 from the available data on metals and because
of the greater availability of experimental surfacc tensions for liquids
the value for the solid is often extrapolated from the liquid data; an
estimate of the solid surface tension at a temperature below 7, may
be obtained by assuming

W;ﬁ & w-02x107K
for the common metals.

Some numerical values of surface tension for nominally pure solids
are given in Table 3.2 (p. 64). Although some of these results may have
been influenced by small amounts of impurities, the data suggest
that for common metals such as copper, nickel, etc., the value of ¥
is about 1-2X1C® ergs/cm® or approximately 0.4-1.0 eV for each
atom in an atomic plane parallel to the dividing surface.

13. SURFACE TENSION AND
SURFACE STRESS

There exists considerable confusion in the literature on solid sur-
faces about the meaning of the quantities surface tension and surface
stress. The difficulty arises partly from the use of different terminology
by different authors, but in many cases it is associated with the fact
that most of the earlier work on surfaces was concerned with liquid-
vapor interfaces for which the distinction is unimportant, and in
fact the two quantities are numerically equal in that case. In general,
surface stress is a tensor quantity, whereas surface tension as defined
by eqn. (1.4) or (1.5) is evidently a scalar. (Jo section 1.4 we shall in
fact see that y varies with the surface orientation and is therefore a
scalar function of the unit vector along the surface normal.) Perhaps
the best discussion of the meaning of surface tension and stress in
crystalline solids is that given in a now well known series of publica-
tions by Herring, and we shall outline here the main features.
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Surface tension corresponds to the work to create unit area of new
surface whereas surface stress is involved in computing the work
involved in deforming a surface. As we shall see, the two quantities
will be numerically equal when atomic mobilities are sufficiently high
to preserve the microscopic configuration of the surface following
the deformation. More quantitatively, consider an arbitrary change
dA in the area 4 of the surface; this may be expressed in terms of a
change of the strain tensor ¢, describing the surface plane by Je,
defined by

dA = AZ Alu 6', (l.,j,’ = l, 2). (18)

The amount of work required for such a deformation may be writ-
ten (to first order) by defining a surface stress tensor g, such that

dw = Az.l‘l Alu (i,j =], 2). (1.9)

The amount of work required is also equal to the change in the quan-
tity yA4, so that

dw = dyAd) = ydA+ A dy
oy
=AY d¢ dey. (L
20> ua,,uz:l(m) . (1.10)

Hence equating the right hand sides of eqns. (1.9) and (1.10) and not-
ing that the resulting equality is true for any arbitrary additional
strain component Je,,

gu=78+ (—a%) (1.11)

as the desired relationship between surface stress g, and surface ten-
sion y. Thus we see that, in general, surface stress and surface tension
will be numerically equal only if y is unaffected by the deformation.
This is evidently true in the case of a liquid where atomic mobilities
are high and there is no long range correlation in atomic positions.
The surface stress will be isotropic with zero shear components (i.e.
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gu = g2, and gi2 = ga1 = 0), so that it may be characterized by a
single quantity g where
| g=17 (1.12)

For a solid, due to the long range correlation in atomic positions and
low atomic mobilities, it may not be possible, in any reasonable
experimental time, to keep constant the local configuration around
any particular atom in the surface region where the deformation of
the surface area is performed. Hence in this case y will be altered,
1.e. (By/Dey) + 0 in general for a crystalline surface. Since y is almost
invariably’ positive as evidenced by the fact that the surface areas of
condensed phases do not spontaneously expand, the surface stress
of liquids is always positive or tensile. This produces, e.g. in a small
liquid droplet, a tendency to contract, resulting in an increase in
density or a decrease in mean atomic volume. On the other hand,
the surface stress of crystalline solids can be either tensile (positive)
or compressive (negative) depending on the magnitude and sign of
(9y/Gey). Thus small crystalline particles of some materials may be
expected to show some increase of atomic volume relative to bulk
material, whereas those of other materials will have decreased mean
atomic volume.

We should note in passing that the existence of & surface stress does
pot in itself imply that the arrangement of atoms in the surface region
is different from that in the interior of the crystal. The condition for
the existence of such rearrangements in a crystal at equilibrium is
that they correspond to a minimization of the total free energy or of
the total internal energy at T = 0°K. It is als> worth commenting
that in a solid even at high temperatures we would generally not ex-
pect the surface stress tensor to be zero although this is obviously a
possibility. Mechanisms whereby the surface stress state of a solid
can be altered can be devised, but it is considerably more difficult
to predict whether they will be energetically favorable. Figure 1.3

* The surface tension associated with the interface between normal and super-
conducting regions in type Il superconductors may effectively be negative.

|
|
|
:
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Fi6. 1.3. Tllustration of how the state of compression or teasion in the

- surface layers can be altered by suitable arrays of dislocations. In (a) the

array of dislocations allows the mean spacing in the surface layers to be

greater than that in the bulk; (b) illustrates a possible “rumpling™ effect
which effectively decreases the surface spacing.

indicates examples of possible surface configurations, involving arrays
of dislocations, vhich would lend tc changes in tue surfice stress
from that characteristic of an ideal plane.

14. VARIATION OF SURFACE
TENSION WITH ORIENTATION

A study of the arrangements of atoms in different planes of a crystal
will immediately suggest that most properties associated with solid
surfaces will vary with the crystallographic orientation of the surface
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plane.’ This is contirmed by experimental studies of such diverse
phenomena as chemical reactions between surfaces and solutions,
electron emission, and surface atomic diffusion. Surface tension is also
expected to vary with orientation since the binding energies and vi-
brational modes of the surface atoms will depend on the local atomic
arrangement. If this variation of y with orientation is sufficiently
marked, the equilibrium shapes of crystals will be polyhedral and
planar surfaces of certain orientations may be unstable with respect
to a spontaneous decomposition into a surface composed of segments
of two or more other orientations even although this process in-
volves a net increase in the real surface area. We will consider here the
connection between crystal morphology and the variation of y with
orientation. This problem is of considerable interest in heterogeneous
catalysis by small metallic particles since catalytic efficiency may be a
strong function of surface orientation. In a later section we return to
a discussion of experimental techniques of determining y.

Consider a one-<component system (for which we may use the terms
surface tension and specific surface free energy interchangeably) in

w
>

Fic. 1.4. Particle of a-phase separated from the S-phase by an interface (or

dividing surface) S, e.g. a crystallioe particle in contact with its vapor. The

equilibrium shape of S is that given by the inner eavelope of the y~plot of
Fig. 1.5.

* An excelient and extensive array of ball models of crystalline surfaces is given
in the book by J. F. Nicholas, An Arlas of Models of Crystal Surfaces, Gordon &
Breach, 196S. See also Chapter 4.
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which there are two phases « and 8 separated by an interface (Fig.
1.4). The problem we wish to focus on is that of determining the equi-
librium shape of the interface. At fixed temperature and total volume
the condition of equilibrium is one of minimum Helmboltz free energy.
We will suppose the phases « and Sto have their equilibrium volumes
and will consider changes only with respect to alterations in the
boundary shape. With these restrictions the equilibrium condition is that

T [ 7(8) d4 = minimum, (1.13)
§

when y() meaas the surface tension of a surface whose orientation
is denoted by the unit vector & along the normal and the integral is
taken over the interface S. We are, of course, neglecting all external
~ gravitational, electrical, or magnetic fields although the external
-gravitational field in particular may be of importance in real situations.'
For interfaces between simple liquids and gases where y is independ-
ent of orientation, it is clear that the condition of equilibrium is
- simply one of minimum surface area so that the equilibrium interface
shape is spherical. There is some experimental evidence that in certain
crystalline substances the crystal-vapor interface approaches this con-
dition at elevated temperatures. However, when there is appreciable
~ variation of y with orientation the resulting equilibrium shape will
be polyhedral with surfaces of low y being preferentially exposed.
There is, of course, no way in which y(f) can be deduced from thermo-
dynamics; it must be either measured or computed from a microscopic
model. We will suppose for our pres=nt purpore that (i) has been
so determined and ask, Given y(8) what is the equilibrium shape?
The variation of y is most conveniently represented by a polar
diagram, called the Wulff plot, in which the radius vector represents
the orientation of the surface (i.e. the direction of the surface normal
) and the magnitude of the surface tension, i.c. it is the ploir =
y(8)a. A two-dimensional section perpendicular to a [100] direction
t The distortion of small droplets produced by the gravitationa! field can n
fact be used in determining the surface tension of liquids as, for example, in the

sessile drop method (see, for example, A. W. Adamson, Physical Chemistry of Sur-
Jaces, Interscience, 1967).

e
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~— Polor plof of surfoce tree energy )
==+ Sompies 0 plones normal 10 rodius veciors of this plot
yhedron

Fio. 1.5. Two-dimensional section of a polar plot of surface tension (Wulff
plot)foncubiccrymlinwhichunwfromthoﬁdntompoimon
theplotmptuenuthediucﬁonoldnnonmlwapmiwluphmud
memuimdedthemdmmfwthtmmm.mquiﬁb-
ﬁummwofaaysnlmbedeﬁvdmmwmm:itisthehwen-
velope of Wulff planes. Surfaces with orientations such as 4, which are not
pmeutintheequiﬁbﬁummwmmpgmybemmbkwimm
to faceting (see text). (AMC.Herﬁn.inSmtmadhmmao[W
Surfaces, ed. R. Gomer and C. S. Smith, University of Chicago Press,
1953, Chapter 1.)

of the Wulff plot of a cubsic crystal is shown schematically in Fig 1.5.The
Wulff plot will have symmetry properties which are the sameas those of
the crystal and for a cubic crystal: for example, the entire plot may
be specified by considering only one octant of the diagram. Thus the
7-plot may then alternatively be represented by lines of constant sur-
face tension in the stereographic triangle as indicated in Fig. 16, and
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FiG. 1.6. Representation of the »plot of a cubic crystal in the stereographic

triangle. The lines are contours of constant surface tension and are nor-

malized with respect 1o the value for the (210) surface. This particular plot

is a calculated one for a face-centered cubic crystal and is based on

nearest neighbor interactions (see section 3.3). (Courtesy W. Winterbot-
tom and N. A. Gjostein.) .

this is generally the most convenient method for presenting experi-
mental data. Figures 1.5 and 1.6 have been drawn to indicate that
certain orientations may correspond to local minima in surface ten-
sion. Thes~ minima have generally been referred to in tke literature as
cusps although they will not, in general, strictly satisfy the mathema-
tical definition of a cusp which would require the slope of the y-plot
to become infinite. The surfaces corresponding to the cusp orienta-
tions are termed singular. '

If we consider any point P on the diagram the plane through P
perpendicular to the radius vector OP is referred to as a Wulff plane
and is obviously parallel to the crystal surface to which the point P
refers. The equilibrium shape of the crystal is determined from the
y-plot by a procedure known as the Wulff construction which consists
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of finding the inner envelope of the Wulff planes for all possible direc-
tions. This is shown schematically in Fig. 1.5. Clearly the Wulff
construction_gives the correct result for a liquid. The proof of the
correctness of this procedure for crystalline materials has been given
by a number of authors with different degrees of generality.! We may
note that although it is possible by this construction to £0 uniquely
from the Wulff plot to the equilibrium shape, the reverse procedure
is clearly not possible although the ratios of the surface tension for
various pairs of orientations which are present in the final shape
could be determined from the equilibrium shape.

At elevated temperatures where atomic transport rates become
appreciable, a phenomenon known as Jaceting frequently occurs.
This consists of the break-up of an initially fiat surface into a hill and
valley structure which is made up of portions of two or more other
orientations one of which is generally a low index plane (see Figs. 1.8
and 1.9). The exposed flat areas of this low index plane are called
Jacets. Since the effect may have a significant influence on many sur-
face properties such as average electronic work function, catalytic
activity, or oxidation rate, etc., it is worth while to consider it in
some detail and in particular to investigate the criteria for the stability
of planar surfaces of a given orientation. These criteria can most
readily be developed with the aid of the Wulff plot and, in fact, we can
assert immediately that a flat surface which is of an orientation present
in the equilibrium shape will be stable with respect to faceting; sur-
faces of other orientations will exhibit faceting. Thus if an expen-
mental Wulff plot were available for the temperature range and envi-
ronment of interest it would be possible to predict whether or not a
particular surface would be stable and also to determine the new
surfaces which would be cxposed if faceting should occur. Extensive
data on Wulff Plots are not yet available, and for this reason stability
criteria have been developed which involve only a small segment of
the polar plot of y. If the surface with which we are dealing has an

1 See, for example, the article The kinetic and thermodynamic properties of
surfaces, by J. P. Hirth in Energetics in Metallurgical Phemomena (ed. W. M.
Mueller), Gordoo & Breach, 1965,
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orientation close to that of some low index plane § we may be inter-
ested in the stability of our surface with respect to exposing segments
of S. This question can most readily be answered using the so-called
“Herring tangent sphere criterion™. If we consider a section of the
y-plot-passing through some singular orientation S and the surface

:of interest 4 (Fig. 1.7), the condition for stability of 4 with respect

to formation of portions of S is that the sphere drawn through 4

- and through- O, the y-plot origin, should lie inside the y-plot between

) ~

Fia. 1.7. Tangent sphere criterion for stability of a particular surface with

respect to faceting. OA represents the surface tension and orientation of a

surface 4 close to some surface S at which a y-plot cusp occurs. A is unstable

with respect to faceting if the sphere through the origin and tangent to

the y-plot at A is pierced by the y-plot as shown io (a); (b) represents the

limiting condition for stability of a surface with respect to forming facets
of S. The sphere tangent at A passes through S.

-
S
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A and S. The limiting conditions will be when the y-plot point re-
presenting S lies on the sphere and the y-plot and the sphere have a
common tangent at S. These two conditions may be expressed by the
equations for the stability of A: .

() oo (5), et

3y (1.19)
¥s = 7.4 co8 6 -(—) sin 0.
S A A .7 p A
The equality applies when 4 and S coexist, a situation which would
be obtained by the break-up of a surface of orientation between A
and S (Fig. 1.7). When such faceting is observed (Figs. 1.8 and 1.9),

Fic. 1.8. Example of a silver crystal exhibiting linear faceting. The mean sur-

face is inclined at about 10’ to the (111) plane. The light bands of the opti-

cal micrograph are portions of (111) plane, while the dark regions are por-

tions of “complex™ surface. The crystal had been heated in air at 900°C for
10 days. (Courtesy A. J. W. Moore.)

|
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Fic. 1.9. Interferometric pattern from isolated facets on an otherwise flat
surface of copper. (Courtesy of W. D. Roberntson.)

{

eqns. (1.14) may be used to derive some information on the local
shape of the y-plot. For example, with the approximation that (8y/06),,
is small we may obtain y,/ys and 1/y(8y/86); from measurement of
the angle of intersection S with 4, i.e. the orientation of 4.

Before leaving the question of surface stability (for the moment)
it is appropriate to mention the influence of kinetic effects on the
obse-vat'ons. It may be possible that irreversible evaporation of the
crystal takes place at such a rate that the system is far from equilib-
rium, with the result that the surface configuration is determined not
by free energy minimization but by kinetic parameters. Thus it has
been argued that a number of examples of faceting are essentially
unrelated to the Wulff plot and that the topography is due to the vari-
ation of evaporation rate with orientation. This point of view is well
represented in the review article by Moore cited in the bibliography.
Another interesting situation arises if the process of faceting is one
which involves a nucleation barrier. Thus if faceting occurs by a
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continuous rotation of the surface normal of a portion of the surface,
then an orientation such as 4 (Fig. 1.5) will be metastable. Alterna-
tively, a nucleation barrier could arise simply from the extra free
energy associated with edges of facet planes. The nonuniform nature
of faceting and the occasional appearance of isolated facets on other-

wise flat surfaces (Fig. 1.9) may be taken as evidence for a nucleation
barrier to faceting.

1.5. INTERSECTION OF INTERFACES

Polycrystalline solids contain a variety of interfaces which include
grain boundaries, stacking faults, and twin boundaries as well as free
surfaces of various orientations. The problem of determining the
overall arrangement of these interfaces which is the stable one is very
complex, but the local equilibrium configuration at the intersection
of interfaces is considerably simpler to predict and is also of some
fundamental interest in connection with the determination of the rela-
tive surface tensions of the different interfaces. We consider three
planar interfaces (Fig. 1.10) intersecting along a line through O and
perpendicular to the plane of the paper and examine the region in the
immediate vicinity of the intersection to obtain the configuration
stable with respect to small displacements. Our derivation of the equi-
librium configuration again follows the classic work of Herring. As
we shall see later, a useful method for determining the y-plot is based
on these considerations.

Consider a small displacement of the line of intersection parallel
to the boundary 1 so that boundary 1 is represented by bP, boundary
2 by aBP, and boundary 3 by ¢CP. Considering unit length perpen-
dicular to the plane of the paper the change in surface tension or sur-
face free energy is, to first order,

OF* = y1(OP)+y«BP-BO)+y(CP-CO)

+BP %aaﬁcpﬁbz,. (1.15)
2

62;
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Fio. 1.10. Intersection of thres planar boundaries along a line through O
and perpendicular to the plane of the paper. To establish the equilibrium
configuration we imagine the line of intersection to be displaced to P and
examine the stability of the system with respect to such small displacements.

Evaluating the lengths in terms of the angles and using the condition
for the initial configuration to be the equilibrium one, i.e. 8F° = 0,
gives

Oy2

y1—73 08 ay—ys €08 ay+ i z.(a”)+sm¢;(g:‘) 0. (1.16)

If t, is a unit vector lying in the plane of the diagram and in the plane
of the boundary i as shown in Fig. 1.10, we may rewrite eqn. (1.16) as

(rm+m+m+ a"’ 6""’) .ty = 0. (1.17)
8; Bl» a'q

Similarly, by considering displacements of the line of intersection
along t, and f; we may generate two other equations analogous to
(1.17). Since €, &, and {; are nonparallel co-planar vectors the vector
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quantity in the square brackets must be identically zero, Thus the equi-
librium configuration at the intersection of three planar interfaces
may be written as

3

) (y)?ﬁ%_) =0, (L18)

im]

The vector quantities dy,/t, have the mathematical form of a tor-
que, i.c. the change in a free energy per unit of angular rotation, and
are generally referred to in the literature as the forque terms. They
may alternatively be viewed as a force per unit area acting normal to
the interface.’ The following are two special cases in which the torque
E:rms are especially important in influencing interface morphologies.
$:

ik
g (a) Twin boundaries
Twin boundaries are rather specialized internal interfaces in solids
Ein that although the two crystals on either side of the boundary are re-
Slated 1o each other by large orientation differences they have extreme-
y small values of surface tension associated with them. For example,
copper the twin boundary tension is of the order of 30 ergs/cm?
compared to ~ 500 ergs/cm® for a normal high angle grain bound-
ry. The reason for the low value of y in this case is that one crystal
n be obtained from the other by performing a reflection operation
bout the twin plane (of type {111} in facecentered cubic metals)
nd nearest neighbor coordination is not disturbed by the presence
[ the boundary. Small perturbations in the orientation of the bound-
relutive to the two crystals would thus be expected to lead to
latively large increases in tension. Thus we expect 9y,/o%, to be very
reefor a twin and in such a direction as to maintain the boundary
incident with the twinning plane. This is the main reason that twin
und.ries invariably produce straight traces on the surface of face-
ntered cubic metals (Fig. 1.11).

" N that eqns. (1.18) are equivalent to {1.16) for the special case of the inter-
©'wointerfaces.
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FiG. 1.11. Electron micrograph showing the intersection of a pair of twin

boundaries with a grain boundary in a copper-1 wt.% antimony alloy.

At C all three boundaries lie in the same 180°. (From M. C. Inman and
H. R. Tipler, Metallurgical Reviews 8, 105 (1963).)

21
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(b) Three intersecting boundaries all in the same 180° (Figs. 1.11 and
1.12)

For fluid interfaces for which the quantities dy,/6t, are zero it is
obvious that the configuration at the intersection of three such bound-

(b) A 1wo-beam interference microscope photograph showing the topo-

graphy of the surface in (2). That all three boundaries can lie in the same

180° at their intersection is due to the influence of the variation of surface
tension with surface orientation. (Courtesy of H. Mykura.)
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{e)

F1a. 1,12. () Definition of quantities used in eqn. (3.9).

aries cannot be such that they all lie in the same semicircle.
However, for crystalline interfaces this situation becomes possible
and a number of examples can be found in the literature. They usually
involve a twin boundary or a low angle boundary which has a suffi-
ciently small free energy such that the derivatives of the y’s with
respect to orientation are significant in magnitude compared to the
7’s themselves. Figures 11.1 and 1.12(a) and (b) show examples with
three intersecting boundaries. In Fig. 1.11 a twin boundary intersects
a grain boundary and in Fig. 1.12(b) we see the intersection of twin
boundaries with a free surface. Later we shall see how quantitative
measurements of the angles at the intersections and of the orienta-
tions.of the crystals involved have been used to determine the Wulff
plot of a number of crystels.

1.6, CURYED INTERFACES AND THE ~
GIBBS-THOMPSON RELATION )

Curved interfacss are involved in numerous practical situations
with bubbles, droplets, and precipitate particles, and in a number of
techniques for determining the surface tensions of both liquids and
solids. There are two relationships which are of special interest in
connection with curved surfaces. These are contained in the equation
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of Young and Laplace and in the Kelvin or Gibbs-Thompson relation.
The first of these equations has to do with the excess pressure inside
a spherical droplet and the second is concerned with the relationship
between equilibrium vapor pressure and radius; they are not independ-
ent and, indeed, the second may be simply derived from the first.
The Young and Laplace equation can be obtained for a liquid droplet
by considering the condition of mechanical equilibrium in the presence
of an isotropic surface stress g. At equilibrium the pressure inside the
drop exceeds that outside by an amount 4P given by

=2

4P = = (1.192)
_%
=2 (1.19b)

where R is the liquid drop radius. The second equation applies to an
isotropic fluid for which surface stress and tension are identical. The
increase in chemical potential caused by the pressure increase of eqn.
(1.19)is to first order

dy > Qo 4P = -2%9.. (1.20)

where Q, is the atomic volume. If we treat the vapor as an ideal gas
for which the chemical potential is equal to (KT In p+constant)
the vapor pressure p that is in equilibrium with the spherical particle
is related to that over a flat surface po by

kT'In (%) = dp (1.21a)
or
kT In (-p%) = ZR?-.Q.. (1.21b)

Equation (1.21b) is the usual form of the Gibbs-Thompson equation.
This equation shows that the higher the curvature the greater the vapor
pressure so that in a system containing a distribution of drop sizes
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the small ones should be expected to disappear by transfer to the larger
particles. as is indeed observed.

For interfaces involving solids we might expect that relationships

similar to eqns. (1.19) and (1.21) would exist. However, in such cases
"~ one has to be more careful about the distinction between surface
stress.and tension and also to recognize the orientational and direc-
tional dependence of these quantities. Thus the Young and Laplace
equation should be replaced for a solid-vapor interface by a relation-
ship between the stress distribution in the particle and the surface
stress. However, the approximation that the surface stress is isotropic
is often made in connection with solid surfaces. For example, for small
crystalline particles the surface stress is assumed also to be given by
eqn. (1.192) which should give rise to an average fractional decrease
in atomic volume given by

a0 .2
3 3

or f01: a cubic crystal, a fractional change in lattice parameter

R (1.22)

da
- B

W —
| &

where B is the isothermal bulk compressibility. A number of investi-
gators have in fact reported deviations in the lattice parameters of
small crrstalline particles We shall quote some of there measurements
later but it is worth noting at this point that the resulting values of g
obtained by using eqn. (1.22) are significantly different in magnitude
in most cases from the corresponding surface tensions. Negative values
of g corresponding to surfaces in compression have in fact been
obtained in a few cases, whereas values of y are invariably positive.
For interfaces between a solid and a liquid or a solid and a vapor,
the Gibbs-Thompson relation is more complicated than eqn. (1.21)
for the reasons noted above. However, for some purposes the direc-
tional effects are ignored and a reasonably satisfactory (if not quan-
titative) description of phenomena involving curved solid interfaces
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can often be given using the form of eqn. (1.21). A more general form
of the Gibbs-Thompson equation has, however, been derived for the
case where there is sufficiently high atomic mobility that the surface
stress and tension may be identified but where the dependence of y
on orientation is included. We shall derive the form of the Gibbs-
Thompson relationship, corresponding to eqn. (1.20), following argu-
ments similar to those given by Herring.

Fia. 1.13. Portion of a curved surface of a crystalline solid with principal

radii of curvature R, and R,. To examine the value of the chemical poteantial

in the vicinity of any point P we imagine a small hump of volume év to

be created and apply the criterion for (local) equilibrium that the system

should be stable against such perturbations. (After C. Herring, in The Physics
of Powder Metallurgy, ed. W, E. Kingston, McGraw-Hill, 1951.)

Consider a portion of a surface having principal radii of curvature
R, and R, (Fig. 1.13) and imagine the creation of a small hump of
volume 8v by the introduction of 8v/{2, vacancies into the crystal at
this portion. s is the atomic volume. Then if g, is the local value of
the vacancy chemical potential and p the mean hydrostatic pressure
locally in the crystal, the change in the volume contribution to the
Helmholtz free energy may be written as —p dv+ u (6v/,). The
increase in surface free energy is & [ v dS). For equilibrium we require
the net change in free energy to be zero, i.c.

(-t 32) ([ ) =0
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= pfy - --ady ds). (1.23)

The second term on the right hand side may be evaluated as shown
by Herring in terms of the local radii of curvature, surface tension,
and its derivatives with respect to orientation. We obtain

= pSo— Qo?{(,: }:)+l(;’;§ %+%%)}. (1.24)

The derivatives with respect to n, and n, measure changes in surface
tension y with changes in the orientation of the surface normal in the
direction of the two principal curvatures. The chemical potential of
atoms relative to its value uo beneath a flat surface where the pressure
is taken as zero is given by

= yo+pﬂo (1.25)

if we neglect small terms of order x kT, where x, is the fractional

vacancy concentration.
Combining eqns. (1.24) and (1.25),

B pho = #o+9or{(; R)+ (%,:1+7R’} (1.26)

If vacancies are always in local equilibrium so that we may set u, = 0
everywhere we obtain, corresponding to eqn. (1.20),

Ap = Q./{(R Rz)+ (g:’; 1:1+%T;;)]' (1.27)

It is clear that this generalized Gibbs-Thompson relationship reduces
to that of a liquid when y may be regarded as isotropic. We shall use
eqn. (1.27) in discussing mass transport near the surfaces of crystals
in section 7.3. For the moment we note that gradients in chemical
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potential can be generated by gradients in surface curvature and that
these will produce atomic fluxes. The magnitudes of the deviations in
chemical potential are quite small for all but the smallest radii of cur-
vature. For example, for a radius of curvature of 1 micron (10~¢ m),
du /KT = 1073 at 10C0°K for a typical metal. The measurement of the
rate at which these differences in chemical potential are eliminated in
crystals provides information on parameters such as volume or sur-
face diffusivities.

So far in our discussion of onecomponent systems we have not
considered the question of the equilibrium structure of the interface.
This question cannot, of course, be answered completely for any par-
ticular case within the framework of thermodynamics since a specific
model of atomic interactions must be adopted at some point in the
development. However, the general framework for the description of
the transition or inhomogeneous region between two phases and the
general concept of diffuse interfaces are of considerable interest. We
shall take up this topic in Chapter 2 in connection with interfaces in
multicomponent systems. For the moment we may note that an inter-
face between two phases should not be regarded as a mathematical
plane at which there is a discontinuous change in properties from
those characteristic of one bulk phase to those characteristic of the
other bulk phase. Rather the transition should be regarded as occur-
ring over a region of finite width (as indicated schematically in Fig.
1.1). This effect will be most marked for liquid-vapor interfaces
or liquid-liquid interfaces near critical points where the interface
essentially becomes infinitely diffuse as the two phases become
identical. :

In dealing with curved interfaces in section 1.6 we have implicitly
assumed that the value of the surface tension was independent of the
local radius of curvature of the surface. There are actually a number
of published papers dealing with the question of the dependence of 3y
on curvature for liquid systems. It appears to be generally agreed that
v will not depart from its value characteristic of a macroscopic flat
surface until the particle radius becomes comparable to atomic dimen-
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stons. This is intuitively reasonable since Jeviations from the macro-
scopic vaiue should be significant only when the curvature is sufficiently
large that the surface coordination is changed or that there is a distor-
tion of the transition region. The exact way in which y varies with
curvature will depend on the type of atomic interactions that are
involved. The usefulness of macroscopic thermodynamic quantities
such as surface tension is questionable in any event when the system
contains only a small number of atoms. _ - -
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