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SOLUTE CLUSTERING AND INTERFACIAL TENSION
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The effect of surface curvature on surface tension has been included in the theory of homogeneous nucleation to show
certain conditions, cluster formation results in a decrease in Gibbs’ free energy. This cluster formation is thus a sponta
and a quasi-equilibrium concentration of clusters of narrow size range may then exist in supersaturated solutior
experimental work suggests the existence of solute clusters in a variety of aqueous solutions. The implications for crysta
and growth theory are discussed.

1. Introduction energy change associated with the lig
phase change. **. It therefore represents
The mechanism of homogeneous nucleation is free energy and is a negative quantity.
not fully understood but the process requires the Fig. 1 illustrates the terms in eq.
spontaneous creation of a solute crystal from a function of cluster size. AG exhibits a 1
single-phase supersaturated system. In the case of at the critical size r,.. Growth of clust:
crystallization from solution such a system con- than this critical size results in a decrea
tains dissolved solute in excess of the equilibrium Gibbs free energy; such clusters thus gros

concentration. It is presumed that in the super-
saturated state a series of bimolecular reactions
between solute molecules or ions gives rise to
ordered “clusters” or “embryos”. These are con-
tinuously forming and dispersing. Any of these
clusters which attain a critical size do not disperse
but continue to grow spontaneously, resulting in
the formation of crystal nuclei. This process is
governed by the following thermodynamic re-
quirements.

The Gibbs free energy of the embryos AG is
made up of both a surface and a volume term and
so is a function of their size; assuming that the
embryos are spherical of radius r, it can be written

(1) L1eac, AG

LTr2g

Cluster s

Gibbs free energy , AG

AG = 47rio + $nr’ AG,.

Here, o is the surface tension per unit surface area

and is a positive quantity. AG, is the specific free Fig. 1. Free energy change for cluster formation; si:
dent surface tension.
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neously and are regarded as nuclei, while clusters
smaller than 7 ar€ presumed to disperse. The
Gibbs free energy at r=r,, AG*,is the activation
energy for nucleation and 1s incorporated into the
formulation of kinetic equations for nucleation.

Thus phase change through nucleation occurs
when clusters of solute reach size r, requiring an
activation energy AG*. AS the supersaturation 1S
increased, AG, becomes more negative resulting in
a smaller critical nucleus size and a lower activa-
tion energy. At higher supersaturations, the
frequency at which clusters reach critical size is
therefore increased and nucleation occurs at a
greater frequency.

2. Influence of surface curvature

The above analysis forms the basis of homoge-
neous nucleation theory. It is, however, based on
the assumption that the surface tension remains
unchanged regardless of the cluster or nucleus
size. Gibbs [1] has shown that surface tension is a
function of the curvature of the surface, the effect
being highly significant for entities with a Very
small radius of curvature. This effect results be-
cause the phase interface is not dimensionless, but
has a significant thickness. When the radius of an
entity is of the same order of magnitude as the
interfacial thickness, the surface tension is af-
fected [1.2].

In accordance with the equation of Gibbs [1-3]
the dependence of surface tension on the inter-
phase potential is

do=—-Tdp. (2)

I is the superficial density of the interfacial region
and p is the chemical potential of the fluid in the
homogeneous part of the phase. The interfacial
region can be envisaged as shown in fig. 2. The
dashed lines enclose the interfacial region of an
?‘L‘W of radius r. The solid line is regarded as the
d(il\/_;(l;;()la}r1 sgrface [4], thaF 1s,‘the surfgce which
i STthe mterfac%al region 1into equuno}ar re-
Sl wh‘e dashed lines mark the bour.ldarles.be-
'densitie 101}} .the two phases haye their ambient
the actj is defined as the @fferegce between

al mass of the interfacial region and the
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Fig. 2. Interfacial region of a cluster.

mass it would have if each phase maintained its
ambient density up to the surface of tension.

For a single component fluid—fluid system,
Tolman [2] derived a relationship between the
surface tension for an infinite plane and the actual
surface tension for small entities as a function of
entity radius and interfacial thickness 29. The
complete derivation is given by Tolman [2] and
Ono and Kondo [3]. Here only the results will be
quoted. Rasmussen et al. [5] have also considered
the effect of cluster radius on surface tension.

Tolman showed that 8 is given by

8=T/(p,— P2) (3)

where p; and p, are the respective phase densities.
This expression was derived for an infinite surface
but was used in the following equation relating
surface tension ¢ with 0,
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Tolman solved eq. (4) numerically and showed
that the numerical solution could be approxi-
mated by

o 1 e
oo 1+28/r (5)

However, if 8/r <1, then it can be shown from
eq. (4) that
6 /0, =exp(—28/r). (6)

Further the numerical solution to eq. (4) obtained
by Tolman can be approximated for 8/r>01by

c/ox=exp(—1.35/r). (7)
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These results predict a substantial decrease in
surface tension for very small entities.

Adapting this concept to solid-liquid interfaces
and using the above exponential approximation in
eq. (1) gives

AG = 4nr’o, exp(—ad/r) + 3mr® AG,. (8)

3. Application

Eq. (8) predicts that entities can be formed
more readily at smaller sizes than does eq. (1). For
example, fig. 3 is a plot of eq. (8) with =2 and
taken as 2.5 nm. Typical values of surface tension
for crystals in suspension are of order 10 mJ/m’
while the critical size of a crystal nucleus is usually
of order 10 nm and is related to the bulk free
energy change by

AG,= —20,/T.. 9)

In fig. 3, eq. (9) was used to approximate AG,,
S0~

Lof

| 1 =
7 8 0| 12 1%
\ Cluster size.r (nm)

\
=
I

©) \

Gibbs free energy .AG (J x10201
~N
(o2}

|
[N)
o

I

-50 L

Fig. 3. Free energy change for cluster formation incorporating
size dependent surface tension. Curves 2 and 3 correspond to
values of AG, 10% less and 10% greater, respectively, than the
value used to calculate curve 1.

using the values of surface tension and criticg]
radius quoted above. This gives AG, = —2 X 10¢
J/m’. The plot shows that when the surface ten.
sion decrease is taken into account, there can exist
a region in the very small size range where cluster
formation results in a decrease in Gibbs’ free
energy. This cluster formation is thus a sponta-
neous event. However, the size of these clusters i
limited because as size increases beyond that cor-
responding to the minimum (at r=r.), the Gibbs
free energy change increases. A quasi-equilibrium
concentration of clusters can therefore be expected |
to exist in “single-phase” supersaturated solutions |
and these clusters will have a mean size of order :
r... From the calculations quoted above it appears
that this size is almost an order of magnitude |
smaller than the critical nucleus size 7.

Fig. 3 also shows the free energy change as a |
function of size for several values of AG,. As
supersaturation increases AG, becomes more |
negative, that is |AG, | increases. In consequence
r., increases while r, decreases. At some high
supersaturation these values ultimately coincide. |

4. Discussion

Evidence for the existence of clusters in NaNO;
solutions has been reported by Hussmann, Larson
and Berglund [6]. Using Raman spectroscopy, they
showed that species exhibiting the Raman spectra
of solid state NaNO; existed in small concentra-
tions in undersaturated as well as in super
saturated solutions. The fraction of the solute in
solution which existed in this state increased with
increasing concentration. The technique could not,
however, give any information concerning the size
of the individual clusters.

Recent work by Larson and Garside [7] has
confirmed that supersaturated solutions develop
concentration gradients in a gravitational forc:
field. Using a quasi-equilibrium model based of
uniform molal free energy of a species, they wer
able to show that, if such clusters exist, a co
centration gradient should develop in the solution
Estimates of the size of clusters in critic acid, ure
NaNO; and K,SO, solutions were made and wert
generally between 1 and 10 nm, each cluster co™




M.A. Larson, J. Garside / Solute clustering and interfacial tension 91

taining the order of 10° molecules. Chang and
Myerson [8], using measurements of solute diffu-
sivity, concluded that diffusion in concentrated
and supersaturated solutions was influenced by
cluster formation.

The presence of clusters of the size and number
indicated by the experimental work cited above
and the theoretical derivation in the present paper
has important implications in the development of
a proper description of the mechanisms of both
primary and secondary nucleation. It would be
expected that observed homogeneous nucleation
in very highly supersaturated solutions would be
highly dependent upon the degree of agitation of
the solution. If large (say ~ 10 nm) clusters were
present slight convective currents or mechanical
agitation would increase greatly the probability of
several (say 2-10) clusters coming into contact,
coalescing and becoming larger than the critical
size. Massive nucleation at the onset of agitation
could be explained by such a mechanism. At some
very high degree of agitation nucleation may be
decreased because of the high shear forces separat-
ing clusters; such behaviour has been reported by
Mullin and Raven [9]. In highly supersaturated
solutions it could be that Brownian motion may
be sufficient to produce primary nucleation.
Nucleation produced by such a mechanism would
require a considerable time to occur but this may
be the limiting step giving rise to observed nuclea-
tion induction times.

Clearly primary nucleation, however initiated,
must be a sensitive function of the convective
currents in the solution whether or not these are
mechanically induced. Once macroparticles are
formed convective currents, developed because of
the particle movement induced by gravitational
forces, is probably sufficient to sustain and in-
‘rease nucleation as long as supersaturation is
sufficiently high.

If it is accepted that an “equilibrium” con-
‘entration of clusters of sizes 1-10 nm exists in
highly soluble supersaturated solutions it must be
tXpected that they play an important role in crystal
srowth. It would be expected that they are the
SPecies diffusing to the surface of a growing crystal
ad upon their arrival at the surface one would
®Xpect a “queueing-up” of the clusters in a ran-

dom orientation at the surface. This would result
in a substantial solute layer needing to reorder
itself so as to fit into the crystal lattice. It seems
reasonable that this layer provides the major source
of secondary nuclei produced by crystal—crystal or
crystal-apparatus contact.

Acknowledgements

The authors acknowledge the support of the
SERC through the provision of a Visiting Fellow-
ship and of the Iowa State University Faculty
Leave program for providing the opportunity for
this collaboration.

Notation

a Constant

AG  Gibbs free energy

AG, . Specific volume free energy
r Cluster radius

Critical cluster radius

I Cluster radius

r Specific density of interface
) Half interfacial thickness

I Chemical potential

p;  Density of cluster

p,  Density of solution

o Surface tension per unit area

0, Surface tension per unit area of flat inter-
face
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