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FLUCTUATION MODEL OF DIFFUSION IN LIQUID METALS

On the Fluctuation Model of Diffusion in Liquid Metals *
: R. A. Swarix

§dxopl of Mineral and Metallurgical Engineering,
University of Minnesota, Minneapolis, Minnesota 55 455

(Z. Naturforsch. 23 a, 805—813 [1968] ; received 15 March 1968)

In this paper further considerations has been given to the fluctuation model of diffusion, and
equations have bcen derived which express the self-diffusivity of liquid metals as a function of
temperature and pressure. For liquid metals which are characterized by pair potentials which are
relatively deep compared with kT, D is predicted to vary in a linear fashion with T at ant
volume. At constant pressure, the apparent activation encrgy is predicted to be (equial Jto
RT+R(f’/B) T? where B is the isothermal compressibility and B’ is its temperature deFivative.
Further, the variation in the logarithm of D with respect to pressure is predicted to be equal to
[(1/2.3)8] (BB/3P)T. A test of the cquations for liquid mercury shows good correlation between
theory and experiment. For liquid metals which are characterized by a shallow well in terms of
the pair potential, no simple statements can be made concerning the nature of the temperature
dependence, and simple approximations cannot be made. A test of the derived equations is made
for liquid sodium which fits this case and for which good pair potential data exist, and good
agreement is obtained at 373 °K. The temperature dependence of D as a function of T at constant
volume is derived, but cannot be tested because of insufficient experimental data.

The case of thermodiffusion is discussed, and it is shown that experimental values of the heat
of transport are consistent with predictions of the theory.
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Introduction

A clear picture has not yet been developed con-
wming the mechanism and parameters important

ke perhaps to the fact that there probably is no

§ é2tle mechanism of diffusion in liquida It is prob-

#le that many processes occur, and that the impor-
#ece of various processes depends both on the tem-
smature of the system as well as upon the nature
o the system itself. Some approaches to the problem
fare tended to bypass the problem by ignoring the
&fficulty in examining the liquid structure itself
nd have treated the liquid as being either solid-like
» gaslike in nature. In the former case, for ex-
mple, it has been supposed that diffusive motions
wrur by discrete steps of fixed magnitude into holes

§ o fixed dimensions. In some cases, fair agreement

ks been obtained between the model and experi-
eent. Interesting as this is, this type of model ap-
prars to bypass the important aspects of real liquids
wd therefore appears to be highly artificial in na-

‘wre,\since no one really appears to believe that dif-

keion occurs over fixed distances into holes of stan-

! Part of this work was performed while the author was a
guest at the University of California, Lawrence Radiation
Laboratory, Livermore, Calif. The research was supported
intotal by the U.S. Atomic Energy Commission.

dard dimensions) The problem then is to recognize
the feature that are characteristic of liquids, and
interpret the various properties in terms of these
features. This has been done quite well for electronic
transport properties in liquids, as shown by Ziman 1,
for example.

With regard to atomic transport properties, im-
portant progres$ has been made in the statistical
mechanical theory of liquids, as shown by Rice and
co-workers 2 for example, but it will probably be a
long time before something as complex as a metal
system can be handled satisfactorily from first prin-
ciples. Some attempts have been made, therefore,
to construct models which take into account the
structure of liquids, and hopefully focus on the prin-
cipal mechanism of atomic transport. This writer 3
for example, suggested that diffusion may occur
through local density fluctuations of variable magni-
tude and that a spectrum of “jump” distance may

exist. Thus, the concept of a single activated process

could not be invoked, and it was suggested that a
log D" versus I/T plot is not necessarily linear.
CoueN and TurNBULL * considered that diffusion oc-

curs through a redistribution of free volume and

J. M. Zimax, Phil. Mag. 6, 1013 [1961].

S. A. Ricg, in: Liquids; Ed. T. J. Hucrer, Elseview 1965.
R. A.

M.C

-~ L ote .

Swavuin, Acta Met. 7, 736 [1959].
onex and D.Turxsott, J. Chem. Phys. 31, 1164 [1959].
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postulated that a critically sized fluctuation is ne-
cessary in order to promote diffusion. It has also
been suggested from an examination of neutron dif-
fraction results that diffusion occurs through the
rotation and translation of metastable clusters 5.

Several years have passed since our model was
first proposed, and since that time more experimen-
tal data have appeared. It is the purpose of this
paper then to re-examine the basic ideas proposed
by this writer® and to redevelop the mathematical
description of the models.

A principal question concerns whether or not
small and variable jump distances occur or whether
or not a critically sized fluctuation is needed in or-
der to promoto a diffusive move. A contribution to
the resolution of this problem has been made
through the recent work of RanMAN® and Paskin
and Ranman?. In both cases attempts have been
made to simulate the liquid state by use of an en-
semble of several hundred particles. The particles
interact with one another through the use of realistic
pair potentials, and the motion of particles is fol-
lowed by use of a computer. Rahman, in this man-
ner, examined in detail the displacement of simulat-
ed argon atoms on a time scale of 10712 sec and
foundtiarindeed Huctuations of the type proposed®
occur, and that further, those fluctuations result in
displacive motions. Specifically, it was found that
the fluctuation “makes the particle rattle in a mo-
mentarily well-defined plane of directions and allows
it to ‘slip’ in a direction perpendicular to the plane.
The rattling is a simple proces identical with the
behavior of atoms in an harmonic solid. The slip-
ping part is the process of self-diffusion ...” Paskin
and Rahman have simulated liquid sodium by a
similar technique, and it appears that diffusive mo-
tions result in_a time period in the vicinity of
3 x 10713 sec. Lf}n examination of the motions of
particles thus simulated does not appear to reveal
the existence of clusters of atoms or the necessity
for critically sized voids to appear before a diffusive
move results.

Development of the Model

From the computer simulated systems described
in the preceding section it would appear that there
is no need to invoke the concept of a critical fluc-
tuation, and that local density fluctuations may be

5 P. A. Ecevstarr, Phil. Mag. Suppl. 11, 203 [1962].
¢ A. Ranuay, J. Chem. Phys. 45, 2585 [1966].

the principal mechanism by which diffusion occurs.
It would also appear that at the instant of diffusion,
the system may be treated as solid-like insofar as the
vibrational spectrum is concerned.

Let us assume, therefore, that the general view-
point expresed in Rel. ® is valid, and that local fluc-
tuations of the type proposed occur and are respon:
sible for diffusion. We will assume further that the
energetics insofar as diffusion is concerned may be
represented adequately by the use of pair potentiuls
V(d) where ¥ (d) is a minimum at d, where d, is
the mean internuclear spacing. The average numbcr
of nearest neighbors to a given atom will be 2. Con-
sider the situation shown in Fig.1a, and allow 4

(a) (b)

Fig. 1 a. Schematic sketch of a liquid metal.
Fig.1b. Schematic sketch of liquid metal showing dennity
fluctuation (from Ref. 3).

local density fluctuation to occur as shown in Fi.
1b. For a given configuration the internuclear s
paration between n neighbors will increase. Let it Le
assumed that the spacing for n neighbors increases
from d, to (dg+j). For a given fluctuation of mag
nitude j;, the contribution toe the diffusion constun:
may be represented by the following equation, if
is assumed that a random walk process may be em
ployed.

dD =4 j?vp(js) P(j) dj (H

where v is a vibrational frequency, f is the correla.
tion coefficient (assumed to be unity in this paper),
P(ji) dj is the probability that a fluctuation of ma;-
nitude between j; and (j;+dj;) will occur next tu s
given atom, and p(j;) is the probability that ke
atom will have sufficient energy to move a distance
Ji once the fluctuation occurs. If » is treated as 2
constant, the actual diffusion constant D will L
given by
Dt [ FEG) 20D 4] 2
The terms P(j) dj and p(j) will now be consides
ed. For a given configuration, let it be assumed tha:

7 A.Pasxix and A. Ranuan, Phys. Rev. Letters 16, 300 (19t
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tatoms will be involved in the fluctuation and that
4 separation between these n atoms from a given
fom increases from dg to (do+j). The energy in-
wived then in the fluctuation E(j) is

E(j) =n[V(dy+j) =V (do)] . (3)

Let it be assumed, neglecting entropy terms, that
4e probability that a fluctuation of magnitude be-
ween j and (j+dj) will occur between two nearest
wighbors is given by P’ (j),

P'(j)dj=Cexp{-[E(DI/kT}dj. (4)

The constant C may be readily evaluated, since
[P'(j) dj=1=beexp{—[E(i)]/kT} dj. (5)
0

lince there are Z nearest neighbors, the probability

. P(j) dj that a fluctuation of magnitude between j

and (j+dj) will occur betwcen any nearest neigh-
bors of the diffusing atom will be given by

P(j) dj = ZP'(j) dj = 2C exp{ ~{E())/k T} dj (6)

| where C is given by Eq. (5).

The term p(j) represents the probability that a

siven atom will have sufficient activation energy to
move a distance j once a fluctuation is formed. Be- _| p(j) = E; e e exp (BT,

fore moving, of the Z neighbors surrounding a given
atom, n are asumed to be at a distance (dg+ /) and
(Z—n) will be at the average distance d,. At the
end of the diffusive move for the particular con-
figuration considered here, it would appear that
(Z—n) atoms will be at distance dy and n atoms
at (dy+ j). Halfway between, it will be assumed for

FLUCTUATION MODEL OF DIFFUSION IN LIQUID METALS

Zv 1J P exp{=nlV o+ =V (@d)1/k T) exp(—AEi/k T) dj
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simplicity that all Z neighbors will be at a separa-

tion (d,+ j/2). Thus, the energy change for an atom
in moving [rom its initial position to the “saddle-

point” is given by

AdE; =2V (dy+j[2) =nV (dy+j) — (Z—n) V (dy)
(7

and for moving from the “saddle-point” to the final
position the energy change will be

AEy=nV (dy+j) + (Z—n) V(do) = ZV (do+ j/2).
(8)

In solid systems, 4E, would represent a “saddle-
point” for a diffusive atom in the sense that 4E; is
a positive quality. It is not clear, however, for li-
quids where j can be very small that 4E; is neces-
sarily positive.&'}xe energy of the system might be
reduced in some cases il the central atom moves a
distance j/2 into an energy well.) In that case, the
atom will need an energy 4E, to continue in trans-
lation. Thus, two situations might be delineated.

Case I: A true saddle point position: 4E; is posi-
tive, 4E, is negative,

0
[ exp[—A4E,[kT) dE

[ exp[—AE,/k T) dE (9)
Case I1: AE, is negative, AE, is positive.
p(j) =exp(dEy/kT). (10)

Upon substitution, therefore, we find that the self-
diffusion constant is given by

D=

where 4E; may be given by Eq. (7) or (8) and de-

pends on which one yields the positive quantity.

! Eq. (11) may be solved in principle for D as a
" function of T and P if appropriate information is

available about the pair potential V' (d). It should
be pointed out that other types of fluctuation could

i

be considered also but it is illustrative at this point
to focus on the one particular type considered here.

Equation (11) may be simplified if
E(j) =n[V(dg+)) =V (dy)]

(11)

6 ({“exp{—n[r’(d.m—rf(do)]/k T} dj

can be expanded in terms of a Maclaurin’s series
and high-order terms neglected. It should be pointed
out here that this approximation is not valid for all
metals. This will be discussed later. Thus,

. .(3V () 2 (3 ()
V(do +]) = V(do) +7 (—'a'].—)1=0+ Tl (—‘37.,'—)1.=0

ja a:\V
+ 31 (3ot o

E(j) =n[V(dy+)j) =V (dy)],

RN L P [ _(49.)_)
E() _nl(ai)i=0 3 2!( o/ i=0+"' y

(12)
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Since at j=0, (3¥/3j);-¢ is zero, and high-order
terms are neglected,

Ess (13)

These terms can only be neglected if the principal
contribution comes from very small values of Jo 1ei€ay
if the potential wells are deep and narrow.

Similarly, we find the following expression for

dE, and 4E,:

: 7 7”3V
A5y = ( 4 "") 2 (SF )jao’ (14)
v Z\ P [(3
i (n— ; ) 2 ('sr-’),-zu' (15)

Typical values of Z would be expected to be in the
range 9 — 11 for metallic systems, and typical values
of n might be 3 -5 for small fluctuations. Under
these conditions 4E, is positive and hence Eq. (8)
will be employed in Eq. (11). Upon substitution of
Egs. (13) and (15) into (11), we find upon inte-
gration the following expression:

o ___/2 » nV*_k T

T 6@n—tDnE VR, (16)

It might be assumed that (32V/32);_, is a func-
tion of the equilibrium inter-atomic spacing d,, and
that Z and » are fairly independent of temperature.
If this is the case, then for a material which can be
represented by a deep potential well, D will be pro-
portional to temperature at constant volume. If one
plots log D versus 1/T and draws a straight line
through the data points over a limited temperature
range, the apparent activation energy at constant
volume will be given by

“QV” — R T .

It should be emphasized again at this point that Eq.
(16) is only applicable for cases where the deep
potential approximation is good. In order to quan-
titatively apply Eq. (16), the pair potentials V (d)
must be known. In Ref. 3, quasichemical theory was
used for this purpose, but for metals this approach
yields values that are probably inaccurate by a sub-
stantial amount. Fairly reliable pair potentials, how-
ever, appear to have been derived for liquid so-
dium * 8, Examination of these potentials shows that
they are far too shallow to be adaptable to the Mac-

8 M. D. Jounson, P. Hutcunson, and N. A. Magzcu, Proc. Roy.
Soc. London A 282, 283 [1964].

laurin series approximation used to obtain Eq. (10).
Consequently, Eq. (11) must be used to obtain dJif-
fusion constants for metals such as liquid sodium.
This will be done in a later section in order to ey
amine the reliability of the model.

It will be illustrative at this point to consider, for
a material which can be represented by Eq. (10,
the predictions as to the effect upon D of tempera-
ture at constant pressure and the effect of pressure
at constant temperature. Let us assume that the cur.
vature (3*F/3j%);.¢ is related to the reciprocal of
the compressibility of the liquid. Since the com.
pressibility 8 is proportional to (32V/312) where 1
is the volume of the system, (327/3j2) will be pro-
portional to do/f where dy is the equilibrium spac-
ing. Then we can represent Eq. (16) in the following
manner:

D=4vAT/d, (17)

where f3 is the isothermal compressibility and A is
a constant for a particular system. Eq. (17) may be
used to examine the temperature dependence of 4
system at constant pressure. First, let us examinc
the apparent activation energy “Q”, for this syslem.
Taking logarithmus of both sides and differentiating
with respect to 1/T, we find that

“Q",=RT+ § RT? (18)
where 8’ is the temperature derivative of the com-
pressibility. Thus we find that curvature is to be ex-
pected on a log D versus 1/T plot as predicted in
Ref. 3, although Eq. (18) has a different form thun
the relationship previously derived. In Ref. 3 it was
predicted that “Q”, was a function only of tempera-
ture and did not involve any of the properties of the
liquid directly.

In order to examine the pressure dependence uf
the diffusivity, it is conventional to plot log D versus
pressure, P. Generally, for liquid metals, the clfe
of pressure is found to be small, and the results arc
often reported in terms of an activation volume.
This interpretation in terms of activation volume i
incorrect, according to the model reported here, I
we neglect the pressure dependence of » and 4,
which is small, the variation of D with pressure i

given as
SlogD] _ 1 <'8ﬂ) 19:
3P Jr 23p\apP)r’ {
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Application of the Model

I From Eq. (17), we find that the temperature de-
{ »ndence of the diffusivity is different from the stan-
i fard exponential form, although, as pointed out in
‘ Ref. 3, most diffusion experiments in liquids are per-
{ rmed over a rather limited temperature range{ In
fn'cw of the always present experimental error, it
: vould be difficult in most cases to expect 1o detect
{my curvature on a logD versus 1/T plst:}‘or a
: naterial that can be represented by the deep well
"model (—¥(dy)> kT) the apparent activation
; mergy can be found from Eq. (18) if the mean
; tmperature of investigation is used and if (8/p)
¢ for the particular material is known. Unfortunately,
gmmpressibility data are not available for most li-

- pid metals nor are good values of the pair potential

rather extensively. Some of the data available will

fluctuation model.

Mercury

Diffusion in liquid mercury has been studied
rather extensively, both as a function of temperature
and pressure. In addition, the pressure and tempera-
tire dependence of the compressibility of liquid
mercury have been measured. As a consequence, it
will be interesting to examine the experimental data
: in terms of the model. Early measurements of the
self-diffusion in liquid mercury were made by
Nacutries and PeriT? both as a function of tem-
perature (273 —372 °K) and pressure (0 — 8000
kg/cm? at 30 °C). Over the temperature range meas-
ured, the data fit a straight line on a log D versus
1/T plot with an aparent activation energy of 1005
cal/g atom. The pressure investigation yields a
straight line when log D is plotted versus pressure
with an apparent activation volume of 0.59 cm?/g-
stom. These data yield a value of dlogD/dP of
-0.98 x 1075 cm?/kg. MEvEr !0 reinvestigated the
temperature dependence of liquid mercury over a
rather broad temperature range (273 —512 °K) in
{ order to detect curvature that might exist.@r‘ldeed,
a considerable deviation was found from a straight
line on the traditional log D versus 1/T plot. The
specific deviation could not be explained precisely

- P SR

$ e

= VO

’ ' N.H.Nacnrries and J. Perir, J. Chem. Phys. 24, 746 [1956].

" R. E. MevsR, J. Phys. Chem. 65, 567 [1961].
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wailable, but a few metals have been examined =

~—
-

be discussed in this section in the context of the X
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by assuming a linear relation between D and T or
aﬁnear relation D and T? as predicted in Ref. %,

f the pair potential for liquid mercury can bete-
presented by a narrow deep well, Eqs. (16) through
(18) are applicable.) An accurate self-potential is
not available, but such an approximation seems
reasonable. Thus, if Eq. (17) is applicable to mer-
cury, a straight line should be obtained if D is plot-
ted versus A T. Such a plot of MeyER’s data is shown
in Fig. 2. The values for § as a function of tempera-
ture were obtained from Ref. !!. It is seen that the

4.504-

.50

2,501~

2.004-

2.60

1.80 200
ATx10° (=)

Fig. 2. Plot of experimental data from Ref. 1° as the logarithm
of the diffusivity D versus # T, where § is the isothermal com-
pressibility at temperature T

fit of data points is quite good. As another test of
the model, it is instructive to plot log D versus T.
The slope of the line obtained should be equal to
1/2.3(f’/B+1/T). If this is done, a line is obtained
experimentally which has a slope of 2.45x 1073 at
323 °K and 1.52x 1073 at 473 °K. From the ex-
perimental compressibility data (8’/f=1.40x 1073
at 323 °K and #’/f=1.58 x 1073 at 473 °K), the
predicted slopes are 1.96x 1073 and 1.61 x 1073
respectively, which is basically consistent with the
experimental observations in terms of magnitude
and change with temperature.

In similar fashion from Eq. (19), a plot of log D
versus pressure should yield a line with slope equal
to 1/2.3 (3B/3p)r . The calculated values of this
quantity from literaturc values! of the compressi-
bility are —1.44x1075cm?%kg at P=0 and
—1.20 x 107 cm?/kg at P =6000 kg/cm®. Tke ex-

1 American Institute of Physics Handbook, 2nd ed., D. W.
Group, Ed. McGraw-Hill, New York 1963.
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perimental value is —0.98 X 107% cm?/kg. The cal-
culated values are consistent with experiment, al-
though the predicted curvature of the line on the
log D —P plot does not appear in the experiments
reported. }

It is interesting now to calculate the apparent ac-
tivation energy for mercury, as compared with the
measured value of 1005X92 cal/g atom between
273 and 372 °K. The mean temperature of investi-
gation was 323 °K, and £'/f at this temperature is
1.40x 1073 (°K) " From Eq. (18) we find that
the calculated value of “Q”, is

“Q7p =640+ 290 =930 cal/g atom

which is consistent within the experimental value
errors.

Sodium

The extensive experimental information which
exists for mercury is not available in the case of
sodium. This is compensated for by the fact that
considerable work has been done on obtaining a
realistic pair potential. Jonunson and co-workers 3
derived from the radial distribution function a pair
potential which has an oscillatory character and can
be expressed in the form V =V po+ Vg, where
Viro is the oscillatory attractive part of its potential
and Vy is the repulsive part of the potential. The
form for Vpo is

d, \3 dy+j
Viro= — 4 (K:'—l) cos ;7.812 [( °d°l) +9 ” eV
(20)
and the form for Vg is

Vr=0.78 exp [5.072'4r ~10.786 ( JZH)J eV. (21)
0

Paskin and Rauman 7, using a potential form of this
type, reproduced the radial distribution function
and diffusivity at one temperature rather well by
examination of the positions of several hundred
particles with the aid of a computer. By measuring
the mean square displacement of the ensemble of
particles as a function of time, the diffusivity was
calculated to be 5.8 x107%cm?®/sec as compared
with the experimental value of 4.2 x 1075 cm?/sec 2.
The constants 4 and y in Eq. (20) were chosen to be
0.027 and 0.5689 eV respectively.

2 R. E. Mever and N. H. Nacurries, J. Chem. Phys. 23, 1851
[1955].

It is interesting therefore to employ this potential
to test the equations developed in this paper. Exami.
nation of the potential shows that the deep well us-
sumption is not valid and therefore Eq. (11) must
be used directly. To use Eq. (11), we must have
values forZ, » and n. The quantity » will be equated
to the Debye frequency which for sodium is 3.33
x 10" sec™!. The quantity n undoubtedly varic-
somewhat with the magnitude of the Auctuation.
There is mo a priori way to obtain this qauntity
directly. Geometrically, one might expect it to be
about equal to 4.

The quantity Z, the average number of nearest
neighbors in liquid sodium will be assumed to be 10.
The integration in Eq. (11) will be terminated ut
the upper limit j=d, instead of ~ because the
model is not applicable in its present form for lurge
fluctuation of the order of the atomic volume in siz.
For these fluctuations, it would be expected that
more than four nearest neighbors would be involsed.
Also it is proposed, in terms of the model presented
here, that fluctuations much smaller in magnitude
than the atomic volume make the principal con-
tribution to diffusion. Substitution of the abue
quantities into Eq. (11) yields a value of D equdl
to 4.1 X 1073 cm*/sec as contrasted to the experi
mental values of 4.2 x 1075 ¢cm?/sec at 373 °K. I
would appear that the model is a realistic represen-
tation of the actual problem. Energetic considera.
tions favor of course small fluctuations, but the pre-
sence of the ; term in the numerator favors laruc
fluctuations. The net result is that most of the diffu-
sion results from fluctuation between 0.1 and 1.2 \.
The value of ()" in terms of the contribution 1
diffusion is calculated to be 0.7 A at 373 °K. Thi.
value is probably somewhat larger for sodium thay
for other metals because of the “softness” of the
sodium potential. By use of the same potential.
values of D may be calculated as a function of tem.
perature at constant volume. These calculations are
shown in Fig. 3, along with the experimental duts
at constant pressure. At present, research is under-
way in our laboratory concerning the measurement
of D at constant volume. These data will be publizh
ed in a later paper. It is not posible to calculute I
as a function of T at constant pressure for sodium
from Eq. (11) since no information is available un
the dependence of ¥(d) on changing the equilibrium
spacing d,. The calculated “apparent activatiun
energy’” at constant volume is larger, however, thun
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fig. 3. Log D versus 1/T plot for liquid sodium. Dashed line

3 ~presents calculated curve at constant volume. Solid line re-

E

yresents experimental curve at constant pressure from Ref. 12,

that predicted by the deep well approximation,

Jramely RT. This occurs because the shallow poten-

tial employed for sodium shifts ()" rather strong-
Iy with temperature. These calculated values are

4 hown in Fig. 4.
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{ Fig. 4. Root mean square diffusion distance as a function of.

temperature for liquid sodium. Calculaited under constant
volume condition.

Interpretation of Heat of Transport
in Liquid Metals

A series of interesting measurements has been
made of isotopic redistribution in liquid metals

811

under the influence of temperature gradient!3-14,
Studies on pure lithium, potassium, rubidium, and
gallium show that in all cases the light isotope (for
example, Li® in pure Li containing both Li® and
Li?) becomes enriched at the cold end. At steady
state, the following relation is obtained 14 15,

= (i = L) (22)

where Q.. is the steady state separation factor
(Cv/C)¢/(Ch/C)u, Cy and C, are the concentra-
tions of heavy and light isotopes respectively and
the subscripts C and H represent cold and hot re-
spectively; AM is the mass difference between heavy
and light isotopes, and a is an experimentally de-
termined term governing the ratio of isothermal
diffusion through the relation D,/D,= (M,/M))".
The quantity ¢ is found experimentally for liquid
metals to have a magnitude equal to about —0.1.
From the experimental parameters, Q® was obtained
for various elements and was found to be equal to
—13.6, —8.3, —10.8 and —11.9 in k gal/g-atom
for the pure metals, Li, K, Rb and Ga respectively.

The principal problem then of any proposed mo-
del is to explain the magnitude and sign of Q. To
illustrate, consider the simple hole theory of diffu-
sion in which diffusion occurs through discrete fixed
jumps of magnitude d,. The activation energy for
self-diffusion is @, and is composed of the sum of
Ep , the activation energy for jumping, and E;, the
energy of hole formation. If it assumed that all the
motion energy is localized in the jumping atom and
is transported a distance dy upon jumping, it can be
shown by standard techniques !5 16 that

Q= (En—Eyp).

It is often presumed acording to this model that
E. ~0 and therefore

Q"= —-0Qp.

The-measured values of Q* are, however, about a
factor of five to eight times more negative. Lop-
DING '5, in attempting to explain the large negative
values of Q®, assumed that diffusion occured by
means of cluster into voids. The distance between
the center of the cyluster and the center of the void
is of dimension &, and the cluster diffuses a dis-

3 A. Orr and A. LunoEw, Z. Naturforsch. 19 a, 822 [1964].
" A. Loooinc and A. Orr, Z. Naturforsch. 21 a, 1344 [1966].
'3 A. Looping, Z. Naturforsch. 21 a, 1348 [1966].

!¢ S. Pracer and H. Evring, J. Chem. Phys. 21, 1347 [1953].
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tance /. By employing an analysis similar to that
performed by Wirtz!? and identifying the heat
transported by the diffusing cluster as E, (again
close to zero), Lodding derived that

Q' =& (Elq_E()-

In this analysis the center of the cluster is con-
sidered to be at temperature T and receives the
activation energy at this temperature, and the center
of the void is at temperature (T + & I5/T) and the
enthalpy of void formation is provided at this tem-
perature. This is not really satisfactory since @ is
a variable which cannot be specifically determined
and as mentioned in the introduction of this paper,
it is not apparent that cluster diffusion is really im-
portant as a diffusion mechanism.

It is interesting to consider, therefore, whether
or not the model discussed in this paper can explain
the magnitude and sign of Q*. It is not clear at this
juncture as to how Eq. (11) can be rigorously ap-
plied. Instead, let us attempt to obtain a semi-quan-
titative approximation. As shown for sodium at
373 °K, half of the diffusion contribution is cal-
culated to come by means of fluctuation smaller
than 0.7'A in magnitude and half through fluctua-
tion greater than 0.7 A in magnitude. Let us assume,
therefore, for the sake of illustration, that all fluc-
tuations are of fixed magnitude (j2)". If this is the
case, the diffusion constant will be given by

De2 LIBV_Z_ exp (— EF;E';.E-'-) (23)
where E is the energy involved in creating the fluc-
tuation of magnitude (j*)"t and £, is the activation
energy for motion. By substituting the experimental
value of D into Eq. (23) we find that (Ep +E) at
373° equals 1380 cal/g-atom for sodium. At a dii-
ferent temperature, of course, £, £y and (j2)"
will be different. Use of Eq. (8) for sodium for
(F)""=0.74A yields a value for E,, of 340 cal/g-
atom and thus E;=1040 cal/g-atom. Consider now
two neighboring atoms lying parallel to the direction
of a thermal gradient. The atom on the left will be
considered to be at temperature T and the atom on
the right will be at temperature (T +d, \/T). A fluc-
tuation of magnitudes (;*)"* will now be created by
providing the particle on the right and its neighbors
with an energy (. Thus it will be considered that
energy Ey is provided at temperature (T+dy VT),

7 K. Wirz, Z. Physik 44, 221 [1943].

whereas for the particle on the left to diffuse 4
distance (j2)", the energy Ey, is provided at tem
perature T. A treatment analogous to Lobpixg’s then
yields for Q*

0" = (4 Ea—Ey).

Substitution of appropriate quantities then yiclds
for Q* a value of —5500 cal/g-atom which is of the
magnitude expected for sodium in terms of the ea-
perimental values for lithium, potassium and rubi-
dium. From a physical point of view, it is easy 1o
see why Q" is large and negative. In the simple hole
model in which diffusion occurs by jumps of magni-
tude d,, the hole, which was formed at a cost of
energy Ep, is transported in the opposite direction
to the diffusing atom a distance d;. In the picturc
proposed here, the atom moves a small distancc
()" but the fluctuation “void” is transported in
the opposite direction a distance (dg+ (j*}'"").
Hence, the energy of void formation £y is tran--
ported with a velocity much greater than the energ)
of motion E, .

Conclusion

In this paper further consideration has been given
to the fluctuation model of diffusion, and equations
have been derived which express the self-diffusivity
of liquid metals as a function of temperature and
pressure. For liquids metals which are characterized
by pair potentials which are narrow and relatively
deep compared with kT, D is predicted to vary in a
linear fashion with T at constant volume. At con
stant pressure, the apparent activation energy is pre-
dicted to be equal to RT +R(S'/B) T? where g is
the isothermal compressibility and £ is its tempera-
ture derivative. Further, the variation in the log-
arithm of D with respect to pressure is predicted
to be equal to (1/2.3 8) (3B/3P)r. A test of the
equations for liquid mercury shows good correlation
between theory and experiment. For liquid metuls
which are characterized by a shallow well in terms
of the pair potential, no simple statements can Le
made concerning the nature of the temperature de-
pendence, and simple approximations cannot Le
made. A test of the derived equations is made for |i-
quid sodium which fits this case and for which gowd
pair potential data exist and good agreement is ob-
tained at 373 °K. The temperature dependence of I
as a function of T at constant volume is derived,
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“it cannot be tested because of insufficient experi-
wental data.

The case of thermal diffusion is discussed, and
tis shown that experimental values of the heat of
nansport are consistent with predictions of the

“eory.

= 10sec the process is interrupted within
(—115 °C) into the reaction vessel.

By means of this
investigated.

over the entire range of the process.

Die in der V. Mitteilung ! beschriebene Untersu-
tung der Kinetik des Cs- und Rb-Isotopenaustauschs
1 Zeolith vom Typ A (LMSA) hatte bei beiden
lustauschprozessen ergeben, daBl diese nicht als ein-
witliche Diffusionsprozesse beschrieben werden kén-
:n. Es gelang jedoch mit einem dort beschrichenen
\uswertungsverfahren, die gemessenen Umsatzkur-
'm formal in zwei verschieden schnell und unabhin-
tig voneinander verlaufende einzelne Diffusionspro-
wse zu zerlegen. Als Endergebnis wurden unter
Verwendung der durch das Auswerteverfahren er-
‘dtenen Parameter Umsatzkurven maschinell be-
wdhinet, die mit den gemesscnen befriedigend iiber-
/instimmten.

Ein wesentliches Ergebnis dieser Untersuchungen
var die Abnahme des Anteils des langsamen Teil-
xrozesses am Gesamtprozel8 mit steigender Tempera-
ar. Die Frage, ob es eine Temperatur gibt, oberhalb
lerer der Isotopenaustausch der Umsatz-Gleichung
fir einen einheitlichen DiffusionsprozeB folgt, konnte
furch Untersuchung des Cs- und Rb-Isotopcnaus-
auschs nicht beantwortet werden. Die Austausch-

"E.Hoixkis u. H. W. Levi, Z. Naturforsch. 22 a, 226 [1967].
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Isotopenaustausch-Untersuchungen an Silicat-Ionenaustauschern

VI UntFrsudlung des Ba-Isotopenaustauschs zwischen Zeolith A und wilriger Losung
bei Temperaturen bis 180 °C mit Hilfe einer neuen experimentellen Methode

E. Hornkis und H. W. Levr
Hahn-Meitner-Institut fiir Kernforschung Berlin
(Z. Naturforsch. 23 a, 813—3817 [1968] ; eingegangen am 10. Mirz 1968)
A method has bcer! devcloped to measure the rate of rapid heterogencous ion exchange reactions
between powdered solids and an aqucous solution within the temperature range from 100 to 180 °C.

The principlc of this method is the following: Both the preheated solid and the preheated
- aqueous solution are brought into contact by breaking a container. After an cxchange period of

a time intervall of 0.2sec by splashing cold alkohol
“temperature-jump”-method the isotopic exchange in Ba-zeolite A has been
The diffusion process was found to be not uniform at temperatures up to 100 °C just as already

had been shown for Cs difussion in Zeolith A. Above 100 °C, however,
ideal diffusion process exactly obeying the solution of the diffusion-cquation for the rclevant case

it appears to become an

geschwindigkeit bei hgheren Temperaturen ist hier
so grof, daB die Austauschkinetik nicht mehr ge-
messen werden konnte. Diese Frage sollte nun fiir
den Ba-Isotopenaustausch untersucht werden, der
langsamer verliuft. Hierzu war es notwendig, eine
Methode zu entwickeln, die es gestattet, schnelle Aus-
tauschprozesse zwischen Festkorpern und wiBrigen
Losungen bei Temperaturen iiber 100° zu messen.

Diese Methode wird als Temperatursprungmethode
bezeichnet.

1. Die Temperatursprungmethode

Die Temperatursprungmethode dient zur Untersu-
chung schnell ablaufender Isotopen- oder Ionenaus-
tauschvorgiinge zwischen einem feinkornigen Fest-
kérper und einer wiBrigen Salzlésung bei Tempe-
raturen zwischen 100 und 180 °C. Sie arbeitet nach
folgendem Prinzip:

Der mit einem y-strahlenden Isotop des Tons, des-
sen Austausch-Kinelik untersucht werden soll, mar-
kierte Festkorper wird in eine dinnwandige Glas-
kugel eingefiillt und die Anfangsaktivitdt im Bohr-
lochkristall gemessen.



