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A topological model incorporating temperature-dependent constraints
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We present a topological model for the composition dependence of glass transition temperature and
fragility. Whereas previous topological models are derived for zero temperature conditions, our
approach incorporates the concept of temperature-dependent constraints that freeze in as the system
is cooled from high temperature. Combining this notion of temperature-dependent constraints with
the Adam–Gibbs model of viscosity, we derive an analytical expression for the scaling of glass
transition temperature and fragility in the binary GexSe1−x system. In the range of 0�x�1 /3, we
reproduce the modified Gibbs–DiMarzio equation of Sreeram et al. �J. Non-Cryst. Solids 127, 287
�1991�� but without any empirical fitting parameters. The modified Gibbs–DiMarzio equation breaks
down for 1 /3�x�2 /5, where the glass transition temperature decreases with increasing
germanium content. © 2009 American Institute of Physics. �DOI: 10.1063/1.3077168�

I. INTRODUCTION

Every step of industrial glass production—melting, fin-
ing, forming, and annealing—is governed by the shear vis-
cosity ��� of the melt.1,2 From the initial glass melting to a
final forming, viscosity varies by over 12 orders of magni-
tude. Viscosity is also sensitive to small changes in compo-
sition, especially in silicate melts where small levels of im-
purities can have a profound influence on the flow behavior.
It is thus of great importance to have accurate knowledge of
the scaling of viscosity with both composition �x� and tem-
perature �T�. Unfortunately, measurement of ��T ,x� is chal-
lenging for high temperature melts, and low temperature
measurements �i.e., in the high viscosity range,
1010–1015 Pa s� are time consuming1,3,4 and often prohibi-
tively expensive. It is therefore of great interest to develop an
accurate model of ��T ,x�.

Modeling of viscosity has been attempted at several lev-
els. On one extreme are empirical models, such as the highly
successful Vogel–Fulcher–Tamman �VFT� model,1,5,6

log10 ��T,x� = A�x� +
B�x�

T − TVFT�x�
. �1�

The three VFT parameters �A, B, and TVFT� are obtained by
fitting Eq. �1� to the experimentally measured viscosity data.
On the other extreme are atomistic models, which generally
employ the Green–Kubo formalism and always assume an
accurate knowledge of the interatomic potentials. However,
calculations for real systems require large computational
times and have been attempted only for a limited number of
simple fluids.7,8 Furthermore, the small integration time step
required in molecular dynamics prohibits these simulations
from accessing the long time scales necessary to compute
high values of viscosity.9

Most successful models of viscosity are intermediate
level �macroscopic� models that not only relate viscosity to
some fundamental quantity but also contain a small set of
empirical fitting parameters. An example is the Adam–Gibbs
model10–15 that describes ��T ,x� in terms of the configura-
tional entropy, Sc�T ,x�, of the melt,

log10 ��T,x� = A�x� +
B�x�

TSc�T,x�
. �2�

The fitting parameters A and B are independent of tempera-
ture but may be dependent on composition. Use of the
Adam–Gibbs equation requires a knowledge of Sc�T ,x�,
which is usually obtained by integrating experimental heat
capacity curves.

While it is desirable to model the entire ��T ,x� surface,
there are really two parameters of particular importance: the
glass transition temperature �Tg� and the fragility �m� of the
melt. Both can be obtained from knowledge of ��T ,x�. The
glass transition temperature represents the upper use tem-
perature limit of a glass and also the low temperature limit
for glass-forming operations. For any composition, the glass
transition temperature is defined as the temperature at which
the shear viscosity is equal to some fixed value, generally
taken as 1012 Pa s,1,3

��Tg�x�,x� = 1012 Pa s. �3�

The �kinetic� fragility m describes the rate at which the vis-
cosity changes with temperature at Tg. Fragility is defined
as16–32

m�x� � � � log10 �

��Tg/T�
�

T=Tg�x�
. �4�

The pioneering work of Phillips and Thorpe33–38 demon-
strated that great insight can be gained into the composition
dependence of glass properties by analyzing the topology ofa�Electronic mail: mauroj@corning.com.
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the glassy network. The Phillips–Thorpe approach is based
on comparing the number of atomic degrees of freedom with
the number of interatomic force field constraints.33 If the
number of degrees of freedom is greater than the number of
constraints, the network is “floppy;” conversely, if the net-
work becomes overconstrained, stressed-rigid structures will
percolate throughout the entire network.34–38 Phillips33 con-
jectured that the tendency for glass formation would be
maximized when the number of degrees of freedom exactly
equals the number of constraints.

In the Phillips–Thorpe approach, the number of con-
straints is determined by counting the number of bond
lengths and bond angles in the system. A mathematically
equivalent approach has been derived by Gupta and
Cooper,39–43 but treating the network in terms of rigid poly-
topes connected at vertices. With both the Phillips–Thorpe
and Gupta–Cooper approaches, the number of constraints for
a given composition is constant with respect to temperature.
In other words, these models are formulated for zero tem-
perature conditions, where there is no thermal energy to
overcome the bond length or angular constraints. Without
including temperature effects, it is impossible to calculate
Tg�x� and m�x� from either model.

The purpose of this paper is to present a topological
model for Tg�x� and m�x� accounting for the temperature-
dependent nature of constraints. Our model is based on the
following postulates.

�1� The spatially-averaged atomic level structure of a glass
just below its glass transition temperature is the same
as that of the liquid just above the glass transition tem-
perature. This structure can be viewed as an infinitely
large topologically disordered network of bond con-
straints.

�2� The network can be floppy �underconstrained�, isostatic
�optimally constrained�, or stressed rigid �overcon-
strained� depending on the average number of con-
straints per atom n�T ,x� and the network dimensional-
ity �d�. When n�T ,x��d, the network is
underconstrained and contains low-frequency deforma-
tion modes, called floppy modes. The network is opti-
mally rigid when n�T ,x�=d and is stressed rigid when
n�T ,x��d.

�3� For a given composition x at high temperatures, the
number of constraints is low and the network is floppy.
As the temperature is lowered, more constraints are
“frozen in.” At some temperature T0�x� the system be-
comes optimally rigid, n�T0�x� ,x�=d, and the viscosity
diverges. In terms of Eqs. �1� and �2�, T0�x�=TVFT�x�
and Sc�T0�x��=0. It is clear that Tg�x��T0�x� for all
realistic glass-forming systems.

�4� For T�T0�x�, additional constraints become rigid.
However, these constraints are redundant and do not
affect the global rigidity of the network. �They do,
however, act to increase the shear modulus of the
glass.�

The outline of our paper is as follows. In Sec. II, we
justify the notion of temperature-dependent constraints in
terms of the energy landscape approach. We then derive the

basic equations for calculating Tg�x� and m�x� in Sec. III. In
Sec. IV, we derive a topological model for the binary
GexSe1−x system and compare the predicted Tg�x� and m�x�
with experimental results.

II. TEMPERATURE-DEPENDENT CONSTRAINTS AND
THE ENERGY LANDSCAPE APPROACH

Traditional atomistic simulation techniques such as mo-
lecular dynamics involve integrating the equations of motion
using a time step on the order of 10−15 s. It is thus infeasible
to use these techniques to achieve the long time scales in-
volved in the study of supercooled liquid and glassy
dynamics.9 In 1969, Goldstein44 postulated that atomic mo-
tion in a supercooled liquid consists of high-frequency vibra-
tions in deep potential energy minima and less frequent tran-
sitions to other such minima. By separating the high-
frequency vibrations within minima from the low-frequency
transitions between minima, this so-called “energy land-
scape” approach greatly facilitates study of supercooled liq-
uid and glassy dynamics. For simulations at constant pres-
sure, the landscape formalism can be rewritten in terms of an
enthalpy landscape.45–49

For a system of N atoms in d dimensions, the potential
energy landscape is a dN-dimensional hypersurface contain-
ing a multitude of local minima. Each of these minima cor-
responds to a mechanically stable configuration of atoms
known as an “inherent structure.”50–55 The volume of con-
figurational space that drains to a particular minimum via
steepest descent is called a “basin;” there is exactly one basin
for every inherent structure. While the landscape itself is
independent of temperature, the way in which the system
explores the landscape in time depends on its phonon energy,
and hence on the temperature of the system. At high tem-
peratures, the system can flow freely among basins, corre-
sponding to the case of an equilibrium liquid. As the system
is cooled, the interbasin transitions occur less frequently due
to the loss of thermal energy. Finally, the glassy state at low
temperatures corresponds to a breakdown of ergodicity
where the system becomes trapped in a subset of the overall
phase space known as a “metabasin.”56

The energy landscape defines the set of all possible ba-
sins, each basin being associated with an inherent structure
that defines the configuration and hence the topology of the
network. Escape from a given basin involves transitioning
through some saddle point and often involves the breaking of
a constraint. The ability of a system to overcome this con-
straint, and hence the rigidity provided by the constraint, is
strongly dependent on the temperature of the system. Letting
q�T� denote the degree of rigidity of a given constraint, it is
thus apparent that

lim
T→0

q�T� = 1 and lim
T→�

q�T� = 0. �5�

In the limit of zero temperature there is no thermal energy
available to break the constraint, so the constraint is fully
rigid. In the limit of infinite temperature, the constraint is
easily broken and hence does not contribute to the rigidity of
the network. At a finite temperature, some fraction of the
constraints are broken while others are rigid. In terms of the
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energy landscape approach, q�T� can be expressed as56

q�T� = �1 − exp�−
�F�

kT
	
�tobs

, �6�

where �F� is the activation free energy for breaking a con-
straint, k is Boltzmann’s constant, � is the vibrational attempt
frequency, and tobs is the observation time. Since typically
�tobs is large, q�T� can be approximated by a unit step func-
tion,

q�T� = ��Tq − T� , �7�

where Tq represents the temperature below which a particular
constraint becomes rigid.

III. THE COMPOSITION DEPENDENCE OF GLASS
TRANSITION TEMPERATURE AND FRAGILITY

According to the Gibbs–DiMarzio theory of the glass
transition,57 the fluidity of a system depends directly on the
configurational entropy. This argument of entropy-dependent
flow was subsequently used by Adam and Gibbs10 to develop
an entropy-based theory of structural relaxation that de-
scribes the viscosity-temperature relationship of a liquid. The
central assumption of the Adam–Gibbs theory is that a liquid
consists of a number of independently relaxing regions or
subsystems. Each region is composed of a group of atoms or
molecules that can rearrange cooperatively. As the liquid is
supercooled the configurational entropy of the system dimin-
ishes and the size of the cooperatively rearranging sub-
systems grows progressively larger. With the Adam–Gibbs
relation of Eq. �2�, the viscosity of a given composition x can
be computed as a function of its configurational entropy.
Since the extrapolated infinite temperature viscosity is gen-
erally independent of composition,16 A�x�=log10 ��, and Eq.
�2� becomes

log �10�T,x� = log10 �� +
B�x�

TSc�T,x�
. �8�

Although the Adam–Gibbs model provides important in-
sights into the relationship between configurational entropy
and the transport coefficients of a supercooled liquid, it fails
to provide a means for calculating B�x�, which is left as a
fitting parameter. In this section, we make use of the Adam–
Gibbs model in a topological approach to compute the scal-
ing of glass transition temperature and fragility with compo-
sition.

Suppose we wish to compute the glass transition tem-
perature of a certain composition x with respect to some
other reference composition xR. Since the viscosity of a su-
percooled liquid at the glass transition temperature is inde-
pendent of the composition,

��Tg�x�,x� = ��Tg�xR�,xR� . �9�

Making use of the Adam–Gibbs relation, we have

Tg�x�
Tg�xR�

=
B�x�
B�xR�

Sc�Tg�xR�,xR�
Sc�Tg�x�,x�

. �10�

Assuming the barrier height is a slowly varying function of
x,58,59 B�x��B�xR� such that

Tg�x�
Tg�xR�

=
Sc�Tg�xR�,xR�
Sc�Tg�x�,x�

. �11�

This is a general result. To calculate Tg�x� using Eq. �11�, one
needs to model Sc�T ,x�.

The configurational entropy Sc�T ,x� of a liquid is related
to the degrees of freedom, f�T ,x�=d−n�T ,x�. A system with
f �0 has f floppy modes per atom. Each floppy mode repre-
sents a channel-like pathway in the energy landscape along
which a system can explore microstates without increasing
its energy significantly. According to Naumis,60 the configu-
rational entropy associated with the floppy modes is made up
of two parts. The major contribution arises from the entropy
of the channels themselves. A minor contribution arises from
the number of basins having the same value of f �the perco-
lation contribution�. According to Naumis,61 “entropy due to
channels in phase space is very likely to be much bigger than
the one corresponding to percolation.” For this reason, in our
treatment we consider only the channel entropy. The channel
contribution to the configurational entropy is given by

Sc = fNk ln 	 , �12�

where 	 is the number of degenerate configurations per
floppy mode �proportional to the volume of the phase space
explored by a floppy mode�. Substituting into Eq. �11�, we
obtain the composition dependence of Tg,

Tg�x�
Tg�xR�

=
f�Tg�xR�,xR�
f�Tg�x�,x�

=
d − n�Tg�xR�,xR�
d − n�Tg�x�,x�

. �13�

Hence, the glass transition temperature of a composition x
can be computed from the composition dependence of the
topological constraints.

Equations �4� and �8� also provide an expression for fra-
gility,

m�x� � � � log10 �

��Tg/T�
�

T=Tg�x�

=
B

TgSc�Tg�x�,x��1 + � � ln Sc�T,x�
� ln T

�
T=Tg�x�

	 . �14�

It also follows from Eq. �8� that

log10� �g

��
	 =

B

Tg�x�Sc�Tg�x�,x�
. �15�

Since �g=1012 Pa s and ���10−5 Pa s for all
compositions,16 we have

m�x� = m0�1 + � � ln Sc�T,x�
� ln T

�
T=Tg�x�

	 , �16�

where m0�17. Substituting Eq. �12� for the configurational
entropy, we obtain the desired expression for fragility in
terms of f ,

m�x� = m0�1 + � � ln f�T,x�
� ln T

�
T=Tg�x�

	 . �17�

Using Eq. �17�, the fragility of a liquid can be computed
based solely on the scaling of the topological degrees of
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freedom with temperature. While Eq. �17� can be used, in
general, to compute fragility, it is often more convenient to
calculate fragility by rewriting the VFT expression of Eq. �1�
as48

m�x� = m0� Tg�x�
Tg�x� − T0�x�	 . �18�

Whereas Tg�x� is an isokomic temperature �see Eq. �3��,
T0�x� is an isentropic temperature,

f�T0�x�� = f�T0�xR�� = 0. �19�

Thus, with knowledge of Tg�x� and T0�x�, fragility can be
computed using Eq. �18�.

IV. APPLICATION TO THE BINARY GexSe1−x SYSTEM

In this section, we apply the temperature-dependent con-
straint model to the binary GexSe1−x system, a covalent sys-
tem for which much experimental data are available in the
literature.62–73 This system exhibits glass formation continu-
ously from pure Se �x=0� to approximately x=2 /5, which is
slightly toward the Ge-rich side of the x=1 /3 stoichiometric
GeSe2 composition. We first review some structural informa-
tion about the GexSe1−x compositions, starting with GeSe2

�x=1 /3�.

A. Review of structural information

Although some chemical disorder has been reported in
GeSe2 glasses,74,75 it is reasonable to consider that GeSe2

consists of one predominant structural unit—the GeSe4 tet-
rahedron. The four-coordinated Ge atom sits at the center of
the tetrahedron and the selenium atoms occupy the vertices.
Each vertex is shared by two tetrahedra such that every se-
lenium atom is coordinated to two germanium atoms. As
shown in Fig. 1�a�, we refer to such selenium atoms �–Ge–
Se–Ge–� as bridging seleniums.

When x�1 /3 there are more seleniums present than
needed to form a network of corner-sharing GeSe2 tetrahe-
dra, as can be readily seen by rewriting the generic compo-
sition GexSe1−x as �GeSe2�xSe1−3x. For 1 /5�x�1 /3, the ex-
cess selenium atoms are located between neighboring Ge-
tetrahedra, forming a bridging selenium pair �–Ge–Se–Se–�
as shown in Fig. 1�b�. For x�1 /5, additional selenium at-
oms are inserted between the tetrahedra, forming chain sele-
niums �–Se–Se–Se–�, indicated in Fig. 1�c�.

Compositions in the range of 1 /3�x�2 /5 are a mix-
ture of GeSe2 tetrahedra and Ge2Se3 structural units, the lat-
ter illustrated in Fig. 1�d�. The fraction of GeSe2 and Ge2Se3

can be computed by introducing a dummy variable y. Bal-
ancing the number of germanium atoms,

GexSe1−x = �GeSe2�x/3−2y�Ge2Se3�x/3+y , �20�

and the number of selenium atoms,

2� x

3
− 2y	 + 3� x

3
+ y	 = 1 − x , �21�

gives the relation

y�x� = 8
3x − 1. �22�

Substituting Eq. �22� into Eq. �20�, we obtain

GexSe1−x = �GeSe2�2−5x�Ge2Se3�3x−1. �23�

B. Calculation of glass transition temperature

In the composition range 0�x�
1
3 , the number of con-

straints per atom is

n�T,0 � x �
1
3� = x�5q
�T� + 2q��T��

+ �1 − x��q��T� + q��T�� + q�T� , �24�

where q�T� gives the hardness of a particular constraint. The
subscripts denote different types of constraints: 
 represents
an Se–Ge–Se angular constraint, � represents a Ge–Se or
Se–Se linear bond, � denotes the angular constraints centered
at Se, and  represents Van der Waals bonding. Hence, the

FIG. 1. �Color online� Basic structural units of the GexSe1−x system: �a�
bridging selenium connecting two GeSe4 tetrahedra, �b� selenium connect-
ing one GeSe4 tetehedron with one Se–Se rod, �c� chain selenium connect-
ing two Se–Se rods, and �d� the Ge2Se3 structural unit.
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first term accounts for five angular and two linear constraints
at each germanium atom, the second term gives one linear
and angular constraint for each selenium atom, and the last
term provides for Van der Waals bonding. With the unit step
approximation of Eq. �7�,

n�T,0 � x �
1
3� = x�5��T
 − T� + 2��T� − T��

+ �1 − x����T� − T� + ��T� − T�� + ��T − T� .

�25�

We assume that the relative strengths of the bonds are such
that T�T��T��T
. The Ge angular constraint �
� is by
far the strongest constraint owing to the sp3 hybridization of
the germanium orbitals, which produces rigid tetrahedral
bond angles. The linear bond constraints ��� provide the
backbone of the glassy network and are frozen in just below
the lowest glass transition temperature in our composition
space, Tg�0�. The Se angular constraint ��� is known to be
quite soft; the elasticity of the Se bond angles is largely
responsible for the breakdown of medium-range order in the
glassy network.76 Of course, Van der Waals �� forces pro-
vide the weakest constraints. With this ordering of bond con-
straints, the glass transition temperature Tg�x� must fall be-
tween T� and T
 across the full range of x values, i.e.,

T � T� � T� � Tg�0 � x �
2
5� � T
, �26�

in order to satisfy the conditions that 0� f�Tg�0�x�
2
5

��
�3 and Tg� 2

5
��Tg�0�. �See Eq. �39� and Fig. 3�a� later in

this paper.�
With Eq. �26�, Eq. �25� simplifies to

n�Tg�x�,0 � x �
1
3� = 5x . �27�

For a network in three dimensions �d=3�, the average num-
ber of degrees of freedom per atom is

f�Tg�x�,0 � x �
1
3� = d − n�Tg�x�,0 � x �

1
3� �28�

=3 − 5x . �29�

Combining Eqs. �13� and �29�, the glass transition tempera-
ture can be calculated as

Tg�0 � x �
1
3�

Tg�0�
=

f�Tg�0�,0�
f�Tg�x�,0 � x �

1
3� =

3

3 − 5x
�30�

or

Tg�0 � x �
1

3
	 =

1

1 − 5
3x

Tg�0� , �31�

which is exactly the modified Gibbs–DiMarzio equation ob-
tained empirically by Sreeram et al.,77

Tg��r� =
1

1 − a��r − 2�
Tg�0� , �32�

where �r is the average atomic coordination number.
Whereas Sreeram77 et al. obtained a empirically for a variety
of three- to five-component chalcogenide systems, here we
derive the fitting parameter as a=5 /6 for the binary GexSe1−x

system �where �r=2x+2�. The modified Gibbs–Marzio
equation has also been obtained through modeling by Kerner

and Micoulaut78 based on agglomeration of local structures
and by Naumis79 based on the Lindemann criteria and the
excess vibrational states due to floppy modes. Kerner and
Micoulaut derived the fitting parameter in the limit of low
selenium content �i.e., x→0� as a=1 / �2 ln 2��0.72, slightly
less than our value of 5 /6�0.83. In Naumis’s work, the
fitting parameter is obtained using the experimentally mea-
sured vibrational density of states in the ternary Ge–As–Se
system. Our Eq. �31� shows that in the GexSe1−x system the
modified Gibbs–DiMarzio equation is valid only in the com-
position range of 0�x�1 /3.

As indicated in Eq. �23�, the addition of excess germa-
nium causes formation of Ge2Se3 units. For 1 /3�x�2 /5,
the number of rigid constraints per atom is given by

n�T, 1
3 � x �

2
5� = �2 − 5x��5q
�T� + 2q��T��

+ �3x − 1��6q
�T� + 3q��T� + 6q��T��

+ �1 − x��q��T� + q��T�� + q�T� , �33�

where the new subscript � refers to additional internal con-
straints that cause the Ge2Se3 unit to become rigid at T�.
These additional constraints include the Ge–Ge linear con-
straint, four Ge–Ge–Se bond angle constraints, and a torsion
angle constraint. We assume that these constraints are weaker
than the Se–Se and Ge–Se linear bonds but stronger than the
Se angular constraints: T��T��T�. This assumption is
clearly justified based on the ab initio simulations of Mauro
and Varshneya,75 who showed that the homopolar Ge–Ge
bond in these glasses is weaker than both the heteropolar
Ge–Se bond and the homopolar Se–Se bond. Moreover,
Boolchand et al.72 stated that his “thermal, optical, and
nuclear measurements, taken together, show unequivocally
that Ge–Ge bonds do not form part of the network back-
bone.”

With the unit step approximation of Eq. �7�, Eq. �33�
becomes

n�T, 1
3 � x �

2
5� = �4 − 7x���T
 − T�

+ �18x − 6���T� − T� + �1 − x��2��T� − T�

+ ��T� − T�� + ��T − T� . �34�

For temperatures near the glass transition, Eq. �26� allows us
to simplify as

n�Tg�x�, 1
3 � x �

2
5� = 5�2 − 5x� + 6�3x − 1� = 4 − 7x .

�35�

Hence, the average number of atomic degrees of freedom is
given by

f�Tg�x�, 1
3 � x �

2
5� = 7x − 1, �36�

and the glass transition temperature in the range of 1 /3�x
�2 /5 is given by

Tg� 1
3 � x �

2
5�

Tg�0�
=

f�Tg�0�,0�
f�Tg�x�, 1

3 � x �
2
5� =

3

7x − 1
. �37�

We therefore obtain the final result,
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Tg�x� = �
3

3 − 5x
Tg�0� , 0 � x �

1

3

3

7x − 1
Tg�0� ,

1

3
� x �

2

5
,� �38�

which, as shown by the solid line in Fig. 2�a�, gives good
agreement with experimental measurements without any fit-
ting parameters. The data points in Fig. 2�a� come from sev-
eral researchers62,63,66–68,71,72 employing a variety of experi-
mental techniques including viscometry, dilatometry, and

calorimetry. While values of Tg can be obtained from any of
these methods, use of different techniques effectively in-
volves using different definitions of the glass transition tem-
perature. Hence there is some inherent disagreement among
experimental data points, which becomes especially pro-
nounced in the x�1 /3 regime. Such Ge-rich glasses are no-
toriously difficult glass formers; glass quality �including
crystallinity and homogeneity� remains a big issue with
slowly cooled glasses, and rapid cooling leads to higher val-
ues of Tg. The most recent data set is that of Boolchand et
al.,72 based on modulated differential scanning calorimetry
�DSC�. However, our model is built on the viscosity defini-
tion of Tg in Eq. �3�; our predictions are in better agreement
with the data set of Ota et al.,62 based on dilatometry mea-
surements. Since dilatometric Tg is governed directly by flow
of the sample, this could provide better agreement with a
viscosity-based definition of Tg. In general, DSC-based Tg

tends to be higher than viscosity-based Tg �i.e., correspond-
ing to a somewhat lower value of viscosity�.80 Another
source of error could be in the model itself, since the struc-
ture of the Ge-rich glasses is not well established. While
there must be Ge–Ge homopolar bonds, there is also strong
evidence for edge sharing of GeSe4 tetrahedra.72,74,75 Unless
these issues are resolved, precise structure based modeling
will not be possible. Here we have considered the simplest
case of forming Ge2Se3 structural units and show that the
experimentally observed trend is at least qualitatively pre-
dicted by our model.

C. Calculation of T0 and fragility

Using Eq. �18� we can compute the composition depen-
dence of fragility, m�x�, from a knowledge of Tg�x� and
T0�x�. As discussed previously, T0�x� is the temperature at
which the degrees of freedom vanish: f�T0�x� ,x�=0. From
Eqs. �25� and �34�, the temperature and composition depen-
dence of f is given by

f�T,x� =� �
3, T � T


3 − 5x , T� � T � T


2 − 6x , T� � T � T�, 0 � x �
1
3

1 − 5x , T � T � T�

− 5x , T � T

�
�

3, T � T


7x − 1, T� � T � T


9x − 3, T� � T � T�, 1
3 � x �

2
5 ,

3 − 9x , T� � T � T�

2 − 8x , T � T � T�

1 − 8x , T � T

��
�39�

which is plotted in Fig. 3�a�. This figure shows three distinct
values of T0,
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FIG. 2. �Color online� Composition dependence of �a� glass transition tem-
perature and �b� fragility in the GexSe1−x system for 0�x�2 /5. The solid
lines show the predicted values Tg and m using the analytical model of Sec.
IV. Results are in good agreement with experimental data �Refs. 62, 63,
66–68, 71, and 72�.
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T0�x� = �T, 0 � x �
1
5

T�, 1
5 � x �

1
3

T�, 1
3 � x �

2
5 ,
� �40�

indicated also in Fig. 3�b�. Here we optimize T=194 K and
T�=218 K to the fragility data of Senapati and Varshneya,67

and we maximize the final T�=304 K. �All three tempera-
tures must fall below Tg�0�, or else the assumption of Eq.
�26� is violated.� As shown in Fig. 2�b�, we demonstrate
excellent agreement with experiment except for underpre-
dicting the final data point at x=2 /5. There is a small step in
m�x� at x=1 /5 owing to the change in T0 from T �i.e.,
governed by Van der Waals constraints� to T� �i.e., governed
by Se angular constraints�. This discontinuity results from

the unit step approximation of Eq. �7� and will be smoothed
out for a real system. There is a larger discontinuity at x
=1 /3 as T0 becomes dominated by the internal constraints of
the Ge2Se3 unit.

V. CONCLUSIONS

We have presented a general topological modeling ap-
proach accounting for the temperature-dependent nature of
the network constraints. Our approach is a generalization of
the previous work of Phillips and Thorpe33–38 and of Gupta
and Cooper39–43 and allows for calculation of the composi-
tion dependence of glass transition temperature and fragility.
We have applied the new approach to the binary GexSe1−x

system and shown excellent agreement of Tg�x� and m�x�
with experimental data.

The main advantage of our approach lies in its simplicity
and the ability to obtain concise analytical expressions for
the scaling of glass transition temperature and fragility with
composition. It is currently not possible to compute such
properties from traditional atomistic simulation techniques
such as molecular dynamics, as these techniques cannot ac-
cess the long time scales necessary to compute viscosity near
the glass transition.

However, unlike molecular dynamics our topological ap-
proach assumes a priori knowledge of the basic structural
units of the glass-forming liquid, as well as the relative
strengths of the different constraints. Atomistic or quantum-
level simulations could be used to provide this input into the
topological model. In this manner, the topological model can
be treated as one level of a broader multiscale modeling ap-
proach, where structural and bond strength information from
numerical simulations are fed as input into the topological
model, which is then used to predict the scaling of macro-
scopic properties. Based on the previous work of Mauro and
Varshneya,73,75,81,82 we believe that Metropolis Monte Carlo
simulations will be particularly useful in this regard, as they
can provide accurate structural information more efficiently
compared to classical molecular dynamics.9

One drawback of the current approach is the assumption
of mean-field theory in describing the rigidity of the net-
work. While mean-field theory is known to provide a good
approximation of rigidity percolation,33–38 corrections due to
local stress effects are crucial for understanding the so-called
intermediate phase behavior.83,84 Also, our current approach
ignores the presence of defects such as miscoordinated atoms
or edge-sharing tetrahedra, features that are known to occur
in chalcogenide systems;74,75 however, it should be possible
to extend our treatment to include the presence of such de-
fects.
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