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The field of high-entropy materials (HEMs) has emerged as a
dynamic area of scientific exploration, driven by the exceptional prop-
erties arising from their compositional complexity. Encompassing
both high-entropy alloys (HEAs) and high-entropy ceramics (HECs),
these materials have garnered significant attention across diverse
research domains. From investigations into phase evolution and
mechanical characteristics to studies of ionic, electronic, and magnetic
behaviors, HEMs demonstrate remarkable potential for a wide array of
applications. These range from catalysis and tribology to energy stor-
age and superconductivity. Fundamental research has shed light on
crucial phenomena such as configurational entropy, lattice distortion,
and sluggish diffusion. These discoveries are paving the way for mate-
rials design strategies that enable new functional tunability and resis-
tance to application-specific harsh environments. This burgeoning
field promises to revolutionize material design and performance across
numerous technological sectors.

This special collection between Applied Physics Letters and the
Journal of Applied Physics provides a timely overview of the latest
research in this area. It highlights the growing interest in understand-
ing the impact of high compositional complexity on conventional
structure–process–property–performance relationships in HEMs.

High-entropy materials (HEMs) are a class of advanced materials
characterized by multicomponent compositions, typically involving
five or more principal elements in near-equiatomic proportions. This
high compositional complexity creates a high configurational entropy,

which favors the formation of single-phase solid solutions over inter-
metallic, interoxidics, or ordered structures. The unique properties of
HEMs stem from several key characteristics. The high-entropy effect
stabilizes simple solid solution phases, which can result in novel crystal
structures. Severe lattice distortions caused by the presence of various
atomic sizes affect both mechanical and thermal properties. Sluggish
diffusion further enhances creep resistance, which is valuable for high-
temperature applications. For further background on high-entropy
materials and entropy stabilization, please refer to the review articles
by Miracle and Senkov1 and McCormack and Navrotsky.2

Foundational work in the field includes the pioneering studies of
Yeh et al.3 and Cantor et al.,4 who introduced the concept of high-
entropy alloys (HEAs). HEAs are metallic systems containing several
elements in roughly equal proportions. Notable examples include
CoCrFeMnNi and AlCoCrFeNi, which exhibit exceptional mechanical
properties such as high strength, excellent fracture toughness, and
thermal stability. HEAs are known for their combination of high
strength and ductility, making them attractive for structural applica-
tions. Rost et al.5 expanded the concept to high-entropy oxides,6 which
further led to expansion into HECs, including carbides,7 nitrides,8

diborides,9 and chalcogenides.10 HECs, particularly oxides and car-
bides, are increasingly investigated for not only functionality11–13 but
also applications in extreme environments, where their superior ther-
mal stability and hardness make them ideal for aerospace and defense
applications.14
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Current HEM research often focuses on developing new compo-
sitions tailored for specific applications, such as superconducting, cata-
lytic, and magnetic properties. Computational modeling, machine
learning, and advanced synthesis techniques like spark plasma sinter-
ing and additive manufacturing are being actively explored to create
microstructures with enhanced properties. The versatility and robust-
ness of HEMs have opened the door to their use in next-generation
technologies.

This collection spans a broad range topics related to phase stabil-
ity, kinetics, mechanical properties, and functional properties in both
HEAs and HECs, totaling 56 articles between Applied Physics
Letters12,15–49 and Journal of Applied Physics.50–69

Many works in this collection focused on synthesis of novel
HEMs. Ninomiya et al.40 successfully fabricated polycrystalline sub-
micrometer-sized high-entropy alloy (HEA) particles through laser
ablation, highlighting the potential for rapid mass manufacturing for
catalysis and tribology applications. Adabasi et al.38 explored high-
entropy sulfide thin films, showing increased corrosion resistance and
high-temperature performance compared to MoS2. MOCVD-
synthesized CoNiFeCuV/C nanoparticles demonstrated promising
dielectric and microwave absorption properties, suggesting their
potential for mitigating electromagnetic pollution.46 HEA nanopar-
ticles for electromagnetic wave absorption were synthesized using elec-
trical wire explosion, showing tunable properties through wire energy
deposition and cooling rates.45 Webb et al.27 studied the high-
temperature stability of entropy-stabilized rock salt oxide
(MgCoNiCuZn)0.2O, finding that Cu and Zn are progressively lost
above 1300 �C, leading to multiphase solidification. Li et al.28 investi-
gated spinel high-entropy oxides (HEOs) for gas sensing, showing a
strong NO2 response supported by density functional theory. Guo
et al.48 examined grain boundary segregation in complex oxides, find-
ing that cation reducibility affects segregation, leading to Pd and Cu
accumulation in oxygen-vacancy-rich regions. The stability of high-
entropy oxides (HEOs) under varying synthesis conditions was stud-
ied, showing phase competition and decomposition in both rock salt
and spinel HEOs, with transformations to metastable phases at high
pressures.22 Finally, the high-entropy oxide Y0.2La0.2Ce0.2Pr0.2Sm0.2O2-d
demonstrated different crystal structures depending on synthesis meth-
ods, with bulk ceramics forming lower-symmetry bixbyite phases and
epitaxial thin films forming higher-symmetry fluorite phases, suggesting
that synthesis kinetics influence local atomic configurations and material
properties.12

Mechanical properties of HEMs continue to hold importance for
the area of structural applications. Xu et al.39 studied the influence of
Al content on bcc lightweight refractory high-entropy alloys, finding
that reducing Al enhances plasticity by removing the brittle Al3Zr5
phase and promoting dislocation networks at grain boundaries.
Rosenkranz et al.65 observed that twinning drives plasticity in hexago-
nal medium-entropy alloys (MEA), challenging assumptions about
high-entropy effects, while Norman et al.36 showed that dislocation
formation in polycrystalline rock salt high-entropy oxides varies with
crystallographic orientation, impacting mechanical stability. Qiao
et al.66 reported that CoCrNi-based alloys exhibit enhanced energy stor-
age capacity from cold work, attributed to fewer immobile dislocations,
and Hao et al.39 explored temperature-dependent serrated flow in
Cantor alloys, contributing to a predictive model for deformation. Liu
et al.70 investigated dynamic strain aging in CoNiV medium-entropy

alloys, linking the Portevin-Le Chatelier effect to solute atoms and dis-
location pinning. Chang et al.19 examined CrCoNiSi0.3 under dynamic
tension, noting an increase in yield strength with strain rate and con-
structing a constitutive model for strain. NbMoCrTiAl alloys demon-
strated increased shear stress at grain boundaries due to intermetallic
precipitates.46 Irradiation studies on high-entropy transition metal
diborides revealed an initial hardness increase followed by a decrease
with continued irradiation, except for (Hf1/3, Ta1/3, Ti1/3)B2, which
exhibited a steady increase in hardness.57

Compositional complexity in high-entropy materials can create
novel magnetic, topological, and electronic phases, explaining that the
variance in spin, charge, lattice, and orbital interactions can push these
materials beyond known phase diagrams, leading to novel phases with
potential for quantum technologies.24 Woodgate and Stauntun,
through DFT and MD studies, highlighted the competition between
chemical phase ordering and segregation in Ti-doped NbMoTaW and
VNbMoTaW HEAs, offering insights into the complex phase behavior
of these alloys.53 Zhao et al.42 investigated strain-driven tuning of mag-
netic properties in epitaxial high-entropy manganite thin films, observ-
ing unique variations in the lattice parameter and a significant
reduction in Curie temperature under large epitaxial strain. Strauss
et al.60 reviewed inorganic and hybrid high-entropy materials, focusing
on their potential for electrochemical energy storage, and highlighted
research directions in anode, cathode, and electrolyte components.
Jangid et al.43 synthesized and characterized the equiatomic bcc HEA
ScVTiHfNb, revealing weakly coupled superconductivity at 4.17K,
with promising low-temperature mechanical properties for supercon-
ducting applications. Miruszewski et al.62 reported on the structure
and electronic properties of (Dy1�xCax)(Zr0.2Hf0.2Sn0.2Ti0.2Ge0.2)O7

pyrochlore oxides, finding low electrical conductivity and a high acti-
vation energy of conduction. Tuning lattice spacing through cation
ratioing in olivine lithium metal phosphates demonstrated enhanced
charge–discharge capacities, laying the groundwork for improved
high-voltage batteries.32

Rajkowski et al.63 developed a high-throughput approach com-
bining diffusion-multiple experiments with a kinetic model to study
interdiffusion in medium- and high-entropy alloys, specifically in qua-
ternary CrFeCoNi alloys. This method efficiently estimates diffusiv-
ities, aligning well with existing literature and aiding the rational
design of alloys for diffusion-critical applications. Additionally,
(HfZrTiTaNb)B2 demonstrated superior oxidation resistance com-
pared to (HfZrTiTaNb)C when tested between 1500 and 1800 �C in
oxygen/argon mixtures, attributed to the formation of a dense oxide
layer in the borides vs a porous oxide layer in the carbides. At
�1800 �C, both systems exhibited reduced consumption, likely due to
the formation of dense (Hf, Zr, Ti) oxides.50

Density functional theory calculations have shown that the
Cauchy–Born rule, typically valid in conventional alloys without
defects, does not hold in multi-principal element alloys.49 This viola-
tion is due to atomic disorder, which leads to inhomogeneous defor-
mations in these materials. Zhao et al.42 applied machine learning
methods to develop a model for alloy ordering based on electronega-
tivity descriptors, using a dataset of 4000 alloy components that
included both conventional and high-entropy alloys. The model accu-
rately predicted low-symmetry (disordered) and high-symmetry
(intermetallic) structures. Protim Hazarika et al.69 used molecular
dynamics simulations to investigate equiatomic and non-equiatomic
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HfNbTaTi high-entropy alloys, showing that high strains influence
amorphization and deformation. Their findings suggest that alloy
strength can be controlled by tuning stoichiometry, as demonstrated
by composition-dependent dislocation densities and strain hardening.

High-entropy materials (HEMs), encompassing both high-
entropy alloys (HEAs) and high-entropy ceramics (HECs), represent a
rapidly growing field of research due to their unique properties stem-
ming from compositional complexity. This collection covers research,
from phase evolution and mechanical properties to ionic, electronic,
and magnetic behaviors, highlighting the potential of these materials
in applications in fields from catalysis and tribology to energy storage
and superconductivity. Key studies have advanced our understanding
of the effects of configurational entropy, lattice distortion, and sluggish
diffusion, contributing to the design of materials that can withstand
extreme environments while maintaining superior mechanical and
thermal stability.

The continued investigation of HEMs is essential for the develop-
ment of next-generation technologies, particularly in industries that
require materials capable of performing under harsh conditions. The
contributions in this collection not only shed light on fundamental
aspects of HEM behavior but also pave the way for future innovation
through computational modeling, machine learning, and advanced
manufacturing techniques. As this field evolves, the insights gained
from this research will play a pivotal role in expanding the scope and
functionality of these materials.

We believe this special collection will be a valuable resource for
researchers and practitioners alike and hope it is well received by the
materials science community. By fostering further exploration of high-
entropy materials, we aim to contribute to the advancement of the field
and the development of new, high-performance materials for a wide
range of applications.

The guest editors of this joint special topic want to express
their deepest gratitude to all authors who contributed to this
collection. A special thank you to the editorial teams at AIP for
their organization and guidance during this process. It has been an
absolute pleasure serving as guest editors, thank you all.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Christina M. Rost:Writing – original draft (lead); Writing – review &
editing (lead). Alessandro R. Mazza: Writing – original draft (sup-
porting); Writing – review & editing (supporting). Scott James
McCormack: Writing – original draft (supporting); Writing – review
& editing (supporting). Katharine Page: Writing – original draft
(supporting). Abhishek Sarkar: Writing – original draft (supporting).
T. Zac Ward: Writing – original draft (supporting); Writing – review
& editing (supporting).

DATA AVAILABILITY

Data sharing is not applicable to this article as no new data were
created or analyzed in this study.

REFERENCES
1D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and
related concepts,” Acta Mater. 122, 448–511 (2017).
2S. J. McCormack and A. Navrotsky, “Thermodynamics of high entropy oxides,”
Acta Mater. 202, 1–21 (2021).

3J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau,
and S.-Y. Chang, “Nanostructured high-entropy alloys with multiple principal
elements: Novel alloy design concepts and outcomes,” Adv. Eng. Mater. 6(5),
299–303 (2004).

4B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, “Microstructural
development in equiatomic multicomponent alloys,” Mater. Sci. Eng. A 375–
377, 213–218 (2004).

5C. M. Rost, E. Sachet, T. Borman, A. Moballegh, E. C. Dickey, D. Hou, J. L.
Jones, S. Curtarolo, and J.-P. Maria, “Entropy-stabilized oxides,” Nat.
Commun. 6(1), 8485 (2015).

6M. Brahlek, M. Gazda, V. Keppens, A. R. Mazza, S. J. McCormack, A.
Mielewczyk-Gry�n, B. Musico, K. Page, C. M. Rost, S. B. Sinnott, C. Toher, T. Z.
Ward, and A. Yamamoto, “What is in a name: Defining ‘high entropy’ oxides,”
APL Mater. 10(11), 110902 (2022).

7T. J. Harrington, J. Gild, P. Sarker, C. Toher, C. M. Rost, O. F. Dippo, C.
McElfresh, K. Kaufmann, E. Marin, L. Borowski, P. E. Hopkins, J. Luo, S.
Curtarolo, D. W. Brenner, and K. S. Vecchio, “Phase stability and mechanical
properties of novel high entropy transition metal carbides,” Acta Mater. 166,
271–280 (2019).

8O. F. Dippo, N. Mesgarzadeh, T. J. Harrington, G. D. Schrader, and K. S. Vecchio,
“Bulk high-entropy nitrides and carbonitrides,” Sci. Rep. 10(1), 21288 (2020).

9J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M. C. Quinn, W. M. Mellor,
N. Zhou, K. Vecchio, and J. Luo, “High-entropy metal diborides: A new class
of high-entropy materials and a new type of ultrahigh temperature ceramics,”
Sci. Rep. 6, 37946 (2016).

10B. Jiang, Y. Yu, J. Cui, X. Liu, L. Xie, J. Liao, Q. Zhang, Y. Huang, S. Ning, B. Jia, B.
Zhu, S. Bai, L. Chen, S. Pennycook, and J. He, “High-entropy-stabilized chalcoge-
nides with high thermoelectric performance,” Science 371, 830–834 (2021).

11E. Krysko, L. Min, Y. Wang, N. Zhang, J. P. Barber, G. E. Niculescu, J. T.
Wright, F. Li, K. Burrage, M. Matsuda, R. A. Robinson, Q. Zhang, R. Katzbaer,
R. Schaak, M. Terrones, C. M. Rost, and Z. Mao, “Studies on the structure and
the magnetic properties of high-entropy spinel oxide (MgMnFeCoNi)Al2O4,”
APL Mater. 11(10), 101123 (2023).

12G. N. Kotsonis, S. S. I. Almishal, L. Miao, M. K. Caucci, G. R. Bejger, S. V. G.
Ayyagari, T. W. Valentine, B. E. Yang, S. B. Sinnott, C. M. Rost, N. Alem, and
J.-P. Maria, “Fluorite-structured high-entropy oxide sputtered thin films from
bixbyite target,” Appl. Phys. Lett. 124(17), 171901 (2024).

13A. Sarkar, Q. Wang, A. Schiele, M. R. Chellali, S. S. Bhattacharya, D. Wang, T.
Brezesinski, H. Hahn, L. Velasco, and B. Breitung, “High-entropy oxides:
Fundamental aspects and electrochemical properties,” Adv. Mater. 31(26),
e1806236 (2019).

14T. Z. Ward, R. P. Wilkerson, B. L. Music�o, A. Foley, M. Brahlek, W. J. Weber,
K. E. Sickafus, and A. R. Mazza, “High entropy ceramics for applications in
extreme environments,” J. Phys. Mater. 7(2), 021001 (2024).

15R. Hao, Z. Wang, X. Jin, A. Lan, and J. Qiao, “A flow model in CoCrFeMnNi
high-entropy alloys during high-temperature tension,” Appl. Phys. Lett.
124(10), 101902 (2024).

16W.-R. Jian, S. Xu, D. Chen, and I. J. Beyerlein, “Chemical short-range order
enhances fracture toughness of medium entropy alloy CoCrNi,” Appl. Phys.
Lett. 124(17), 171903 (2024).

17L. Amalia, Y. Li, H. Bei, Y. Chen, D. Yu, K. An, Z. Lyu, P. K. Liaw, Y. Zhang, Q.
Ding, and Y. Gao, “Copper effects on the microstructures and deformation
mechanisms of CoCrFeNi high entropy alloys,” Appl. Phys. Lett. 124(14),
141901 (2024).

18S. U. Hassan, Y. Yang, T. H. Qamar, M. Shah, I. Khan, L. Hou, and S. Wang,
“Core-shell designed high entropy alloy CoNiFeCuV-C nanoparticles for
enhanced microwave absorption,” Appl. Phys. Lett. 124(12), 121902 (2024).

19H. Chang, T. Zhang, J. Qiao, P. K. Liaw, Z. Jiao, Z. Li, L. Quan, and Z. Wang,
“Deformation-induced HCP phase transformation of CrCoNiSi0.3 medium-
entropy alloy under high strain rate tension,” Appl. Phys. Lett. 124(14), 141902
(2024).

Applied Physics Letters EDITORIAL pubs.aip.org/aip/apl

Appl. Phys. Lett. 125, 200401 (2024); doi: 10.1063/5.0245693 125, 200401-3

Published under an exclusive license by AIP Publishing

 15 N
ovem

ber 2024 22:56:39

https://doi.org/10.1016/j.actamat.2016.08.081
https://doi.org/10.1016/j.actamat.2020.10.043
https://doi.org/10.1002/adem.200300567
https://doi.org/10.1016/j.msea.2003.10.257
https://doi.org/10.1038/ncomms9485
https://doi.org/10.1038/ncomms9485
https://doi.org/10.1063/5.0122727
https://doi.org/10.1016/j.actamat.2018.12.054
https://doi.org/10.1038/s41598-020-78175-8
https://doi.org/10.1038/srep37946
https://doi.org/10.1126/science.abe1292
https://doi.org/10.1063/5.0161401
https://doi.org/10.1063/5.0201419
https://doi.org/10.1002/adma.201970189
https://doi.org/10.1088/2515-7639/ad2ec5
https://doi.org/10.1063/5.0191459
https://doi.org/10.1063/5.0206532
https://doi.org/10.1063/5.0206532
https://doi.org/10.1063/5.0201647
https://doi.org/10.1063/5.0201983
https://doi.org/10.1063/5.0202924
pubs.aip.org/aip/apl


20D. Tanada, S. M. Lyth, K. Ishikawa, and Y. Miyajima, “Deposition of high
entropy alloy sub-surface films on metal substrates via DC magnetron sputter-
ing with a CoCrFeMnNi target,” Appl. Phys. Lett. 124(15), 151903 (2024).

21Y. Guo, Y. Gong, T. Zhang, Z. Zhang, B. Chen, F. Chen, Z. Jiang, and F. Xu,
“Design of CrxFe1� xMnCoNiGeSi high-entropy alloy with large barocaloric
effect,” Appl. Phys. Lett. 124(6), 061904 (2024).

22S. S. Aamlid, M. Kim, M. U. Gonz�alez-Rivas, M. Oudah, H. Takagi, and A. M.
Hallas, “Effect of high pressure synthesis conditions on the formation of high
entropy oxides,” Appl. Phys. Lett. 125(2), 021901 (2024).

23E. Babi�c, I. A. Figueroa, V. Mik�si�c Trontl, P. Pervan, I. Pletikosi�c, R. Risti�c, A.
Sal�cinovi�c Feti�c, �Z. Skoko, D. Stare�sini�c, T. Valla, and K. Zadro, “Electronic
structure–property relationship in an Al0.5TiZrPdCuNi high-entropy alloy,”
Appl. Phys. Lett. 124(22), 221903 (2024).

24A. R. Mazza, J.-Q. Yan, S. Middey, J. S. Gardner, A.-H. Chen, M. Brahlek, and
T. Z. Ward, “Embracing disorder in quantum materials design,” Appl. Phys.
Lett. 124(23), 230501 (2024).

25B. Storr and S. A. Catledge, “High entropy alloy MoNbTaVW synthesized by
metal-oxide reduction in a microwave plasma,” Appl. Phys. Lett. 124(10),
101905 (2024).

26G. V. Afonin, J. C. Qiao, A. S. Makarov, R. A. Konchakov, E. V. Goncharova,
N. P. Kobelev, and V. A. Khonik, “High entropy metallic glasses, what does it
mean?,” Appl. Phys. Lett. 124(15), 151905 (2024).

27M. Webb, M. Gerhart, S. Baksa, S. Gelin, A.-R. Ansbro, P. B. Meisenheimer, T.
Chiang, J.-P. Maria, I. Dabo, C. M. Rost, and J. T. Heron, “High temperature
stability of entropy-stabilized oxide (MgCoNiCuZn)0.2O in air,” Appl. Phys.
Lett. 124(15), 151904 (2024).

28X. Li, X. Chang, X. Liu, and J. Zhang, “High-entropy oxide (FeCoNiCrMn)3O4

for room-temperature NO2 sensors,” Appl. Phys. Lett. 124(22), 221901 (2024).
29H. Min, Z. Wang, J. Wu, H. Sun, Q. Wang, and Z. Qiu, “In situ annealing opti-
mization by anomalous Hall effect for a high-entropy alloy,” Appl. Phys. Lett.
124(13), 132403 (2024).

30D. Dickes, Y. Zhao, F. Baier, B. €Ozt€urk, R. V€olkl, T. Li, M. C. Galetz, and U.
Glatzel, “Influence of oxygen ingress on microstructure and phase formation
during two-step oxidation surface hardening of TiZrNbHfTa high entropy
alloy,” Appl. Phys. Lett. 124(7), 071903 (2024).

31F. Arjmand, A. Mourgout, A. Chali, M. Djemai, C.-Y. Langueh, O. Monasson,
E. Peroni, M. Boissiere, S. Ammar-Merah, and G. Dirras, “L-PBF processing
and characterization of a Ti35Nb30Zr29Mo3Ta3 multiprincipal element alloy for
medical implants,” Appl. Phys. Lett. 125(4), 041904 (2024).

32J. Fan, T. Wang, Y. Yuan, A. Borisevich, C.-L. Do-Thanh, Z. Yang, and S. Dai,
“Lattice engineering of high-entropy olivine-type lithium metal phosphate as
high-voltage cathodes,” Appl. Phys. Lett. 124(17), 171909 (2024).

33D. Zhao, X. Jin, J. Qiao, Y. Zhang, and P. K. Liaw, “Machine-learning-assisted
modeling of alloy ordering phenomena at the electronic scale through electro-
negativity,” Appl. Phys. Lett. 124(11), 111902 (2024).

34L. Schweiger, F. R€omer, G. Gizer, M. Burtscher, D. Kiener, C. Pistidda, A.
Sch€okel, F. Spieckermann, and J. Eckert, “Mechanical processing and thermal
stability of the equiatomic high entropy alloy TiVZrNbHf under vacuum and
hydrogen pressure,” Appl. Phys. Lett. 124(24), 241903 (2024).

35S. G. Rao, R. Shu, J. Wang, J. Chai, Y. Zhu, A. L. Febvrier, and P. Eklund,
“Mechanical properties of Xe-ion-irradiated high-entropy-alloy-based multi-
layers,” Appl. Phys. Lett. 124(6), 061906 (2024).

36J. E. Norman, X. Wang, A. D. Dupuy, and J. M. Schoenung, “Micropillar com-
pression of single-crystal single-phase (Co, Cu, Mg, Ni, Zn)O,” Appl. Phys.
Lett. 125(3), 031901 (2024).

37Y.-H. Wu, T.-N. Lam, S.-W. Ke, W.-J. Lee, C.-Y. Lee, B.-Y. Chen, G.-C. Yin,
W.-Z. Hsieh, C.-Y. Chiang, M.-T. Tang, B.-H. Lin, and E.-W. Huang, “Mixing
entropy and enthalpy effects on europium ions in Eu-doped BaAl2O4,” Appl.
Phys. Lett. 124(9), 094105 (2024).

38G. Adabasi, A. Deshpande, K. Tanaka, J. Ancheta, E. Maldonado, M. €Ozdo�gan,
S. Kodambaka, and M. Z. Baykara, “Nanoscale friction of high entropy alloy
sulfide thin films in comparison with molybdenum disulfide,” Appl. Phys. Lett.
123(26), 261603 (2023).

39C.-H. Xu, H. Yu, X. Xiao, J.-W. Zhang, and W.-B. Liao, “Optimizing Al content
to eliminate the brittle phase in lightweight TiZrNbTa0.1Alx refractory high-
entropy alloys,” Appl. Phys. Lett. 124(17), 171907 (2024).

40R. Ninomiya, D. Kim, N. Takata, S. M. Lyth, K. Ishikawa, and Y. Miyajima,
“Production of sub-micron-sized high-entropy alloy particles and nanoparticles
via pulsed laser ablation of CrMnFeCoNi targets in water,” Appl. Phys. Lett.
124(20), 201903 (2024).

41B. Liu, Z. Wang, A. Lan, H. Yang, P. K. Liaw, and J. Qiao, “Statistical analysis of
serrated flows in CoNiV medium-entropy alloy,” Appl. Phys. Lett. 124(6),
061903 (2024).

42Z. Zhao, M. Waqar, A. K. Jaiswal, A. R. Raghavan, D. Fuchs, J. Lin, T.
Brezesinski, S. S. Bhattacharya, H. Hahn, X. Pan, R. Kruk, and A. Sarkar,
“Strained single crystal high entropy oxide manganite thin films,” Appl. Phys.
Lett. 125(1), 011902 (2024).

43S. Jangid, P. K. Meena, R. K. Kushwaha, S. Srivastava, P. Manna, P. Mishra, S.
Sharma, and R. P. Singh, “Superconductivity with a high upper critical field in
an equiatomic high-entropy alloy Sc–V–Ti–Hf–Nb,” Appl. Phys. Lett. 124(19),
192602 (2024).

44R. Tanveer, D. Windsor, S. Drewry, K. Page, H. Xu, V. Keppens, and W. J.
Weber, “Synthesis and properties of rare-earth high-entropy perovskite,” Appl.
Phys. Lett. 124(21), 214101 (2024).

45L. Liang, J. Wu, Z. Yin, C. Kong, A. Pervikov, H. Shi, X. Li, and A. Qiu,
“Synthesis of FCC structure Fe10Co25Ni34Cu23Al8 high-entropy-alloy nanopar-
ticles by electrical wire explosion: For electromagnetic wave absorption,” Appl.
Phys. Lett. 124(5), 053502 (2024).

46J. Wang, S. Basu, A. Kauffmann, M. Heilmaier, and R. Schwaiger, “The effect of
grain boundaries and precipitates on the mechanical behavior of the refractory
compositionally complex alloy NbMoCrTiAl,” Appl. Phys. Lett. 124(20),
201905 (2024).

47X. Wang, S. Zong, Y. Zhang, Z. Mo, J. Qiao, and P. K. Liaw, “The large mag-
netocaloric effect in GdErHoCoM (M¼Cr and Mn) high-entropy alloy
ingots with orthorhombic structures,” Appl. Phys. Lett. 124(12), 122412
(2024).

48H. Guo, H. Vahidi, H. Kang, S. Shah, M. Xu, T. Aoki, T. J. Rupert, J. Luo, K. L.
Gilliard-AbdulAziz, and W. J. Bowman, “Tuning grain boundary cation segre-
gation with oxygen deficiency and atomic structure in a perovskite composi-
tionally complex oxide thin film,” Appl. Phys. Lett. 124(17), 171605 (2024).

49S. Ghosh, “Violation of the Cauchy–Born rule in multi-principal element
alloys,” Appl. Phys. Lett. 124(17), 171906 (2024).

50L. Backman, B. M. Hunter, M. L. Weaver, and E. J. Opila, “Invited Article: The
oxidation kinetics and mechanisms observed during ultra-high temperature
oxidation of (HfZrTiTaNb)C and (HfZrTiTaNb)B2,” J. Appl. Phys. 136(5),
055106 (2024).

51R. Mitra, A. Gupta, and K. Biswas, “A simple recipe for designing multicompo-
nent ultra-high temperature ceramic classes by using structure maps coupled
with machine learning,” J. Appl. Phys. 136(4), 045104 (2024).

52F. J. Domínguez-Guti�errez, A. Olejarz, M. Landeiro Dos Reis, E. Wyszkowska,
D. Kalita, W. Y. Huo, I. Jozwik, L. Kurpaska, S. Papanikolaou, M. J. Alava, and
K. Muszka, “Atomistic-level analysis of nanoindentation-induced plasticity in
arc-melted NiFeCrCo alloys: The role of stacking faults,” J. Appl. Phys.
135(18), 185101 (2024).

53C. D. Woodgate and J. B. Staunton, “Competition between phase ordering and
phase segregation in the TixNbMoTaW and Tix VNbMoTaW refractory high-
entropy alloys,” J. Appl. Phys. 135(13), 135106 (2024).

54H. Solunov, “Configuration entropy and potential energy landscape in thermo-
dynamics and dynamics of supercooled liquids,” J. Appl. Phys. 135(24), 244701
(2024).

55V. Dubov, A. Bondarau, D. Lelekova, I. Komendo, G. Malashkevich, V.
Kouhar, V. Pustovarov, D. Tavrunov, and M. Korzhik, “Customizing the lumi-
nescent properties of compositionally disordered ceramics (Gd, Y, Yb, Tb,
Ce)3Al2Ga3O12: From an ultra-fast scintillator to bright, wide-spectrum phos-
phor,” J. Appl. Phys. 135(5), 053104 (2024).

56S. Mahato, S. R. Jha, R. Sonkusare, K. Biswas, and N. P. Gurao, “Effect of the
deformation temperature and strain on the strain rate sensitivity of fcc
medium-entropy alloys,” J. Appl. Phys. 136(2), 025103 (2024).

57A. Khanolkar, A. Datye, Y. Zhang, C. A. Dennett, W. Guo, Y. Liu, W. J. Weber,
H.-T. Lin, and Y. Zhang, “Effects of irradiation damage on the hardness and
elastic properties of quaternary and high entropy transition metal diborides,”
J. Appl. Phys. 136(10), 105106 (2024).

Applied Physics Letters EDITORIAL pubs.aip.org/aip/apl

Appl. Phys. Lett. 125, 200401 (2024); doi: 10.1063/5.0245693 125, 200401-4

Published under an exclusive license by AIP Publishing

 15 N
ovem

ber 2024 22:56:39

https://doi.org/10.1063/5.0201180
https://doi.org/10.1063/5.0194979
https://doi.org/10.1063/5.0201964
https://doi.org/10.1063/5.0201591
https://doi.org/10.1063/5.0203647
https://doi.org/10.1063/5.0203647
https://doi.org/10.1063/5.0192076
https://doi.org/10.1063/5.0199955
https://doi.org/10.1063/5.0199076
https://doi.org/10.1063/5.0199076
https://doi.org/10.1063/5.0191206
https://doi.org/10.1063/5.0199127
https://doi.org/10.1063/5.0190771
https://doi.org/10.1063/5.0208341
https://doi.org/10.1063/5.0201709
https://doi.org/10.1063/5.0188516
https://doi.org/10.1063/5.0204628
https://doi.org/10.1063/5.0187142
https://doi.org/10.1063/5.0211263
https://doi.org/10.1063/5.0211263
https://doi.org/10.1063/5.0187000
https://doi.org/10.1063/5.0187000
https://doi.org/10.1063/5.0180716
https://doi.org/10.1063/5.0205714
https://doi.org/10.1063/5.0200341
https://doi.org/10.1063/5.0187784
https://doi.org/10.1063/5.0206767
https://doi.org/10.1063/5.0206767
https://doi.org/10.1063/5.0200805
https://doi.org/10.1063/5.0206254
https://doi.org/10.1063/5.0206254
https://doi.org/10.1063/5.0187760
https://doi.org/10.1063/5.0187760
https://doi.org/10.1063/5.0203536
https://doi.org/10.1063/5.0196758
https://doi.org/10.1063/5.0202249
https://doi.org/10.1063/5.0204091
https://doi.org/10.1063/5.0206227
https://doi.org/10.1063/5.0200666
https://doi.org/10.1063/5.0200717
https://doi.org/10.1063/5.0200862
https://doi.org/10.1063/5.0201651
https://doi.org/10.1063/5.0186860
https://doi.org/10.1063/5.0201673
https://doi.org/10.1063/5.0206224
pubs.aip.org/aip/apl


58J. Luo, “Grain boundary segregation models for high-entropy alloys:
Theoretical formulation and application to elucidate high-entropy grain
boundaries,” J. Appl. Phys. 135(16), 165303 (2024).

59P. M. Brune, G. E. Hilmas, W. G. Fahrenholtz, J. L. Watts, C. J. Ryan, C. M.
DeSalle, D. E. Wolfe, and S. Curtarolo, “Hardness of single phase high entropy car-
bide ceramics with different compositions,” J. Appl. Phys. 135(16), 165106 (2024).

60F. Strauss, M. Botros, B. Breitung, and T. Brezesinski, “High-entropy and com-
positionally complex battery materials,” J. Appl. Phys. 135(12), 120901 (2024).

61F. Li, L. Han, X. Wang, A. Lan, and J. Qiao, “High-temperature tensile behavior
and constitutive model in Co-free Fe40Mn20Cr20Ni20 high-entropy alloy,”
J. Appl. Phys. 135(20), 205106 (2024).

62T. Miruszewski, F. Vayer, D. Jaworski, D. B�erardan, C. Decorse, B. Bochentyn,
D. Sheptyakov, M. Gazda, and N. Dragoe, “High-temperature transport proper-
ties of entropy-stabilized pyrochlores,” J. Appl. Phys. 135(8), 085112 (2024).

63M. Rajkowski, A. Durand, J. R. Morris, G. Eggeler, and G. Laplanche, “High-
throughput approach for investigating interdiffusion in medium- and high-
entropy alloys,” J. Appl. Phys. 135(17), 175101 (2024).

64A. Gupta, G. Shankar, S. Pawar, S.-H. Choi, and S. Suwas, “Microstructural sta-
bility and mechanical properties of the as-cast and heat-treated newly devel-
oped TiNbCrTa refractory complex concentrated alloy,” J. Appl. Phys. 136(5),
054901 (2024).

65L. Rosenkranz, Q. Lan, M. Heczko, A. J. Egan, M. J. Mills, M. Feuerbacher, and
U. Glatzel, “Microstructure evolution and twinning-induced plasticity (TWIP)
in hcp rare-earth high- and medium-entropy alloys (HEAs and MEAs) due to
tensile deformation,” J. Appl. Phys. 136(2), 025101 (2024).

66X. Qiao, F. Cao, M. Su, C. Yang, T. Li, G. Ding, Y. Tan, Y. Chen, H. Wang, M.
Jiang, and L. Dai, “Partition of plastic work into heat and stored cold work in
CoCrNi-based chemically complex alloys,” J. Appl. Phys. 135(14), 145103
(2024).

67S. Weng, W. Han, G. Chen, and T. Fu, “Spatially varied stacking fault energy
induced low twinning ability in high entropy alloys,” J. Appl. Phys. 135(20),
205103 (2024).

68O. J. Marques and C. U. Segre, “Structural modeling of high-entropy oxides
battery anodes using x-ray absorption spectroscopy,” J. Appl. Phys. 135(22),
225001 (2024).

69M. Protim Hazarika, A. Tripathi, and S. N. Chakraborty, “Study of phase tran-
sition and local order in equiatomic and nonequiatomic mixtures of HfNbTaTi
under uniaxial loading from molecular dynamics simulations,” J. Appl. Phys.
135(14), 144901 (2024).

70Z. K. Liu, “Quantitative predictive theories through integrating quantum, statis-
tical, equilibrium, and nonequilibrium thermodynamics,” J. Phys.: Condens.
Matter 36, 343003 (2024).

Applied Physics Letters EDITORIAL pubs.aip.org/aip/apl

Appl. Phys. Lett. 125, 200401 (2024); doi: 10.1063/5.0245693 125, 200401-5

Published under an exclusive license by AIP Publishing

 15 N
ovem

ber 2024 22:56:39

https://doi.org/10.1063/5.0200669
https://doi.org/10.1063/5.0198141
https://doi.org/10.1063/5.0200031
https://doi.org/10.1063/5.0205316
https://doi.org/10.1063/5.0180991
https://doi.org/10.1063/5.0200346
https://doi.org/10.1063/5.0206425
https://doi.org/10.1063/5.0207181
https://doi.org/10.1063/5.0191314
https://doi.org/10.1063/5.0177256
https://doi.org/10.1063/5.0206316
https://doi.org/10.1063/5.0200629
https://doi.org/10.1088/1361-648X/ad4762
https://doi.org/10.1088/1361-648X/ad4762
pubs.aip.org/aip/apl

