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Determination of
Crystal Structure

10-1 INTRODUCTION

- Since 1913, when W. L. Bragg solved the structure of NaCl, the structures of many
thousands of crystals, organic and inorganic, have been determined. This vast body
of knowledge is of fundamental importance in such fields as crystal chemistry,
solid-state physics, and the biological sciences because, to a large extent, structure
determines properties and the properties of a substance are never fully understood
until its structure is known. In metallurgy, a knowledge of crystal structure is a
necessary prerequisite to any understanding of such phenomena as plastic de-
formation, alloy formation, or phase transformations.

The work of structure determination goes on continuously since there is no
dearth of unsolved structures. New substances are constantly being synthesized,
and the structures of many old ones are still unknown. In themselves crystal
structures vary widely in complexity: the simplest can be solved in a few hours,
while the more complex may require months or even years for their complete
solution. (Proteins form a notable example of the latter kind; some protein
structures are now known, but others still defy solution.) Complex structures
require complex methods of solution, and structure determination in its entirety
is more properly the subject of a book than of a single chapter. All we can do here
is to consider some of the principles involved and how they can be applied to the
solution of fairly simple structures. Moreover, we will confine our attention to the
methods of determining structure from powder patierns alomne, because such
patterns are the kind most often encountered by the metallurgist.

The basic principles involved in structure determination have already been
introduced in Chaps. 3 and 4. We saw there that the crystal structure of a substance
determines the diffraction pattern of that substance or, more specifically, that the
shape and size of the unit cell determines the angular positions of the diffraction
lines, and the arrangement of the atoms within the unit cell determines the relative
intensities of the lines. It may be worthwhile to state this again in tabular form:

Crystal structure Diffraction pattern

Unit cell +— Line positions
Atom positions < Line intensities

Since structure determines the diffraction pattern, it should be possible to go in the
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10-1 Introduction 325

other direction and deduce the structure from the pattern. It is possible, but not in
any direct manner. Given a structure, we can calculate its diffraction pattern in a
very straightforward fashion, and examples of such calculations were given in
Sec. 4-13; but the reverse problem, that of directly calculating the structure from
the observed pattern, has not yet been solved for the general case (Sec. 10-8). The
procedure adopted is essentially one of trial and error. On the basis of an educated
guess, a structure is assumed, its diffraction pattern calculated, and the calculated
pattern compared with the observed one. If the two agree in all detail, the assumed
structure is correct; if not, the process is repeated as often as is necessary to find
the correct solution. The problem is not unlike that of deciphering a code, and
requires of the crystallographer the same qualities possessed by a good crypt-
_analyst, namely, knowledge, perseverance, and not a little intuition.
The determination of an unknown structure proceeds in three major steps:

1. The shape and size of the unit cell are deduced from the angular positions of
the diffraction lines. An assumption is first made as to which of the seven crystal
systems the unknown structure belongs to, and then, on the basis of this as-
sumption, the correct Miller indices are assigned to each reflection. This step is
called “indexing the pattern™ and is possible only when the correct choice of
crystal system has been made. Once this is done, the shape of the unit cell is
known (from the crystal system), and its size is calculable from the positions and
Miller indices of the diffraction lines.

2. The number of atoms per unit cell is then computed from the shape and size
of the unit cell, the chemical composition of the specimen, and its measured
density.

3. Finally, the positions of the atoms within the unit cell are deduced from the
relative intensities of the diffraction lines.

Only when these three steps have been accomplished is the structure deter-
mination complete. The third step is generally the most difficult, and there are
many structures which are known only incompletely, in the sense that this final
step has not yet been made. Nevertheless, a knowledge of the shape and size of
the unit cell, without any knowledge of atom positions, is in itself of very great
value in many applications.

The average metallurgist is rarely, if ever, called upon to determine an un-
known crystal structure. If the structure is at all complex, its determination is a
job for a specialist in x-ray crystallography, who can bring special techniques, both
experimental and mathematical, to bear on the problem. The metallurgist should,
however, know enough about structure determination to unravel any simple
structures he may encounter and, what is more important, he must be able to
index the powder patterns of substances of known structure, as this is a routine
problem in almost all diffraction work. The procedures given below for indexing
patterns are applicable whether the structure is known or not, but they are of
course very much easier to apply if the structure is known beforehand.
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102 PRELIMINARY TREATMENT OF DATA

The powder pattern of the unknown is obtained with a Debye-Scherrer camera or
a diffractometer, the object being to cover as wide an angular range of 20 as
possible. A camera such as the Seemann-Bohlin, which records diffraction lines
over only a limited angular range, is of very little use in structure analysis. The
specimen preparation must ensure random orientation of the individual particles
of powder, if the observed relative intensities of the diffraction lines are to have any
meaning in terms of crystal structure. After the pattern is obtained, the value of
sin? 0 is calculated for each diffraction line; this set of sin? @ values is the raw
material for the determination of cell size and shape. Or one can calculate the d
value of each line and work from this set of numbers.

Since the problem of structure determination is one of finding a structure which
will account for all the lines on the pattern, in both position and intensity, the
investigator must make sure at the outset that the observed pattern does not
contain any extraneous lines. The ideal pattern contains lines formed by x-rays of
a single wavelength, diffracted only by the substance whose structure is to be
determined. There are therefore two sources of extraneous lines:

1. Diffraction of x-rays having wavelengths different from that of the principal
component of the radiation. If filtered radiation is used, then K« radiation is the
principal component, and characteristic x-rays of any other wavelength may
produce extraneous lines. The chief offender is Kf radiation, which is never
entirely removed by a filter and may be a source of extraneous lines when diffracted
by lattice planes of high reflecting power. The presence of Kf lines on a pattern
can usually be revealed by calculation, since if a certain set of planes reflect XKf
radiation at an angle 6, they must also reflect K, radiation at an angle 6, (unless
0, exceeds 90°), and one angle may be calculated from the other. It follows from
the Bragg law that

2

(-l%) sin? 0, = sin® @, (10-1)

Kk
where 2%,/A%s has a value near 1.2 for most radiations. If it is suspected that a
particular line is due to KB radiation, multiplication of its sin? 8 value by A%,/2%,
will give a value equal, or nearly equal, to the value of sin? 0 for some Ku line on
the pattern, unless the product exceeds unity. The Kp line corresponding to a
given Kua line is always located at a smaller angle 20 and has lower intensity.
However, since Kx and Kf lines (from different planes) may overlap on the pattern,
Eq. (10-1) alone can establish only the possibility that a given line is due to Kf
radiation, but it can never prove that it is. Another possible source of extraneous
lines is L characteristic radiation from tungsten contamination on the target of the
x-ray tube, particularly if the tube is old. If such contamination is suspected,
equations such as (10-1) can be set up to test the possibility that certain lines are
due to tungsten radiation.

2. Diffraction by substances other than the unknown. Such substances are usually
impurities in the specimen but may also include the specimen mount or badly
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Fig. 10-1 An example of a correction curve for sin? 6 values.

aligned slits. Careful specimen preparation and good experimental technique will
eliminate extraneous lines due to these causes.

For reasons to be discussed in Chap. 11, the observed values of sin? 6 always
contain small systematic errors. These errors are not large enough to cause any
difficulty in indexing patterns of cubic crystals, but they can seriously interfere
with the determination of some noncubic structures. The best method of removing
such errors from the data is to calibrate the camera or diffractometer with a
substance of known lattice parameter, mixed with the unknown. The difference
between the observed and calculated values of sin? 8 for the standard substance
gives the error in sin? 0, and this error can be plotted as a function of the observed
values of sin? . Figure 10-1 shows a correction curve of this kind, obtained with
a particular specimen and a particular Debye-Scherrer camera.* The errors
represented by the ordinates of such a curve can then be applied to each of the
observed values of sin? 0 for the diffraction lines of the unknown substance. For
the particular determination represented by Fig. 10-1, the errors shown are to be
subtracted from the observed values.

10-3 INDEXING PATTERNS OF CUBIC CRYSTALS

A cubic crystal gives diffraction lines whose sin? 0 values satisfy the following
equation, obtained by combining the Bragg law with the plane-spacing equation
for the cubic system, as in Eq. (3-10):

sin® 0 _sinf@ )2

= = —, 10-2
(B + k* + 1% s 4q? (10-2)

Since the sum s = (h* + k* + I?) is always integral and 42/44® is a constant for
any one pattern, the problem of indexing the pattern of a cubic substance is one of
finding a set of integers s which will yield a constant quotient when divided one
by one into the observed sin? @ values, (Certain integers, such as 7, 15, 23, 28, 31,

* For the shape of this curve, see Prob. 11-5.
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etc., are impossible because they cannot be formed by the sum of three squared
integers.) Once the proper integers s are found, the indices hk/ of each line can be
written down by inspection or from the tabulation in Appendix 10.

The proper set of integers s is not hard to find because there are only a few
possible sets. Each of the four common cubic lattice types has a characteristic
sequence of diffraction lines, described by their sequential s values:

Simple cubic: 1,2,3,4,5,6,8,9,10, 11, 12, 13, 14, 16, . ..
Body-centered cubic: 2, 4, 6, 8, 10, 12, 14, 16, . ..

Face-centered cubic: 3,4, 8, 11, 12, 16, ...

Diamond cubic: 3,8,11,16,...

_ Each set can be tried in turn. Longer lists can be prepared from Appendix 10. If
a set of integers satisfying Eq. (10-2) cannot be found, then the substance involved
does not belong to the cubic system, and other possibilities (tetragonal, hexagonal,
etc.) must be explored.

The following example will illustrate the steps involved in indexing the pattern
of a cubic substance and finding its lattice parameter. In this particular example,
Cu Ku radiation was used and eight diffraction lines were observed. Their sin?
values are listed in the second column of Table 10-1. After a few trials, the integers
s listed in the third column were found to produce the reasonably constant quotients
listed in the fourth column, when divided into the observed sin? 8 values. The fifth
column lists the lattice parameter calculated from each line position, and the sixth
column gives the Miller indices of each line. The systematic error in sin?  shows
up as a gradual decrease in the value of 12/4a?, and a gradual increase in the value
of a, as 0 increases. We shall find in Chap. 11 that the systematic error in a de-
creases as 0 increases; therefore we can select the value of a for the highest-angle
line, namely, 3.62 A, as being the most accurate of those listed. Our analysis of
line positions therefore leads to the conclusion that the substance involved, copper
in this case, is cubic in structure with a lattice parameter of 3.62 A.

We can also determine the Bravais lattice of the specimen by observing which
lines are present and which absent. Examination of the sixth column of Table 10-1

Table 10-1
— S
1| 2 3 4 5 | 6
Line | sin“0 |s= (2424 | ofky | wat
‘ tn<
1 [ 0.140 3 1 o.0467 | 3.57 [
2 | 0.185 4 0.0463 | 3.59 | 200
3 0.369 8 0.0461 | 3.59 | 220
4 | 0.503 T 0.0457 | 3.61 | 311
5 | 0.548 12 0.0457 | 3.61 | 222
) 0.726 16 | 0.0454 3.62 400
7 | 0.861 19 0.0453 | 3.62 | 331
8 | 0.905 20 [ 0.0453 | 3.62 | 420
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shows that all lines which have mixed odd and even indices, such as 100, 110, etc.,
are absent from the pattern. Reference to the rules relating Bravais lattices to
observed and absent reflections, given in Table 4-1, shows that the Bravais lattice
of this specimen is face-centered. We now have certain information about the
arrangement of atoms within the unit cell, and it should be noted that we have
had to make use of observed line intensities in order to obtain this information.
In this particular case, the observation consisted simply in noting which lines had
zero intensity.

The characteristic line sequences for cubic lattices are shown graphically in
Fig. 10-2, in the form of calculated diffraction patterns. The calculations are made
for Cu Ka radiation and a lattice parameter a of 3.50 A. The positions of all the
diffraction lines which would be formed under these conditions are indicated as
they would appear on a film or chart of the length shown. (For comparative
purposes, the pattern of a hexagonal close-packed structure is also illustrated,
since this structure is frequently encountered among metals and alloys. The line
positions are calculated for Cu Ku radiation, a = 2.50 A, and ¢/a = 1.633, which
corresponds to the close packing of spheres.)

Powder patterns of cubic substances can usually be distinguished at a glance
from those of noncubic substances, since the latter patterns normally contain many
more lines. In addition, the Bravais lattice can usually be identified by inspection:
there is an almost regular sequence of lines in simple cubic and body-centered
cubic patterns, but the former contains almost twice as many lines, while a face-
centered cubic pattern is characterized by a pair of lines, followed by a single line,
followed by a pair, another single line, etc.

The problem of indexing a cubic pattern is of course very much simplified if
the substance involved is known to be cubic and if the lattice parameter is also
known. The simplest procedure then is to calculate the value of A2/4a® and divide
this value into the observed sin?  values to obtain the value of s for each line.

There is one difficulty that may arise in the interpretation of cubic powder patterns,
and that is due to a possible ambiguity between simple cubic and body-centered cubic
patterns. There is a regular sequence of lines in both patterns up to the sixth line; the
sequence then continues regularly in body-centered cubic patterns, but is interrupted in
simple cubic patterns since s = 7 is impossible. Therefore, if 1 is so large, or a so small,
that six lines or less appear on the pattern, the two Bravais lattices are indistinguishable.
For example, suppose that the substance involved is actually body-centered cubic but the
investigator mistakenly indexes it as simple cubic, assigning the value s = 1 to the first
line, s = 2 to the second line, etc. He thus obtains a value of 12/4a? twice as large as the

true one, and a value of a which is 1/\/ 2 times the true one. This mistake becomes
apparent when the number of atoms per unit cell is calculated from the measured density
of the specimen (Sec. 10-7); the wrong cell size will give a nonintegral value for the number
of atoms per cell, and such a value is impossible. The ambiguity in the diffraction pattern
itself can be avoided by choosing a wavelength short enough to produce at least seven
lines on the pattern.
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Fig. 10-2 Calculated diffraction patterns for various lattices. s = A% + k2 + /2.

104 INDEXING PATTERNS OF NONCUBIC CRYSTALS

(GRAPHICAL METHODS)
The problem of indexing powder patterns becomes more difficult as the number of
unknown parameters increases. There is only one unknown parameter for cubic
crystals, the ceii edge a, but noncubic crystals have two or more, and special
graphical and analytical techniques have had to be devised in order to index the
patterns of such crystals.
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Tetragonal System
The plane-spacing equation for this system involves two unknown parameters,
a and c:

— = +=. (10-3)

This may be rewritten in the form

Lollw vy L
d>  a? (c/a)? |’

or

(c/a)?
Suppose we now write Eq. (10-4) for any two planes of a tetragonal crystal,
distinguishing the two planes by subscripts 1 and 2, and then subtract the two
equations. We obtain

2
2logd, — 2logd, = —log| (1 + k?) + 11 i
(c/a)

2
+ log [(hg + k2) + 2 ] (10-5)
(c/a)?
This equation shows that the difference between the 2 log d values for any two
planes is independent of a and depends only on the axial ratio ¢/a and the indices
hkl of each plane. This fact was used by Hull and Davey as the basis for a graphical
method of indexing the powder patterns of tetragonal crystals [10.1].

The construction of a Hull-Davey chart is illustrated in Fig. 10-3. First, the
variation of the quantity [(h* + k) + [2/(c/a)?] with c/a is plotted on two-range
semilog paper for particular values of hkl. Each set of indices Akl, as long as they
correspond to planes of different spacing, produces a different curve, and when
I = 0 the curve is a straight line parallel to the c/a axis. Planes of different indices
but the same spacing, such as (100) and (010), are represented by the same curve
on the chart, which is then marked with the indices of either one of them, in this
case (100). [The chart shown is for a simple tetragonal lattice; one for a body-
centered tetragonal lattice is made simply by omitting all curves for which
(h + k + 1) is an odd number.] A single-range logarithmic d scale is then con-
structed; it extends over two ranges of the [(h*> + k?) + /%/(c/a)?] scale and runs
in the opposite direction, since the coefficient of log d in Eq. ( 10-4) is —2 times the
coefficient of log [(A* + k?) + I?/(c/a)*]. This means that the 4 values of two
planes, for a given c/a ratio, are separated by the same distance on the scale as the
horizontal separation, at the same c/a ratio, of the two corresponding curves on
the chart.

The chart and scale are used for indexing in the following manner. The spacing
d of the reflecting planes corresponding to each line on the diffraction pattern is
calculaled. Suppose that the first seven of these values for a particular pattern are
6.00, 4.00, 3.33, 3.00, 2.83, 2.55,and 2.40 A. A strip of paper is first laid alongside

2
210gd=210ga—log[(h2+k2)+ ! ] (10-4)
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the d scale in position I of Fig. 10-3, and the observed d values are marked off on
its edge with a pencil. The paper strip is then placed on the chart and moved
about, both vertically and horizontally, until a position is found where each mark
on the strip coincides with a line on the chart. Vertical and horizontal movements
correspond to trying various c/a and a values, respectively, and the only restriction
on these movements is that the edge of the strip must always be horizontal. When
a correct fit has been obtained, as shown by position II of Fig. 10-3, the indices of
each line are simply read from the corresponding curves, and the approximate
value of c/a from the vertical position of the paper strip. In the present example,
the c/a ratio is 1.5 and the first line on the pattern (formed by planes of spacing
6.00 A) is a 001 line, the second a 100 line, the third a 101 line, etc. After all the
lines have been indexed in this way, the d values of the two highest-angle lines are
used to set up two equations of the form of Eq. (10-3), and these are solved
simultaneously to yield the values of a and ¢. From these values, the axial ratio
c/a may then be calculated with more precision than it can be found graphically.

Figure 10-3 is only a partial Hull-Davey chart. A complete one, showing
curves of higher indices, is reproduced on a small scale in Fig. 10-4, which applies
to body-centered tetragonal lattices. Note that the curves of high indices are often
so crowded that it is difficult to assign the proper indices to the observed lines. It
may then be necessary to calculate the indices of these high-angle lines on the basis
of a and ¢ values derived from the already indexed low-angle lines.

Some Hull-Davey charts, like the one shown in Fig. 10-4, are designed for use
with sin? 0 values rather than 4 values. No change in the chart itself is involved,
only a change in the accompanying scale. This is possible because an equation
similar to Eq. (10-4) can be set up in terms of sin? 8 rather than d, by combining
Eq. (10-3) with the Bragg law. This equation is

log sin? 8 — log 2= + log| (7 + k?) + — (10-6)
g Ly g [ (c/a)z] .
The sin? 0 scale is therefore a two-range logarithmic one (from 0.01 to 1.0), equal
in length to the two-range [(h* + k) + [?/(c/a)?] scale on the chart and running
in the same direction. A scale of this kind appears at the top of Fig. 10-3.

When the c/a ratio becomes equal to unity, a tetragonal cell becomes cubic.
It follows that a cubic pattern can be indexed on a tetragonal Hull-Davey chart by
keeping the paper strip always on the horizontal line corresponding to c/a = 1.
(In fact, one can make one-dimensional Hull-Davey charts for the rapid indexing
of cubic patterns.) It is instructive to consider a tetragonal cell as a departure from
a cubic one and to examine a Hull-Davey chart in that light, since the chart shows
at a glance how the powder pattern changes for any given change in the c/a ratio.
It shows, for example, how certain lines split into two as soon as the c/a ratio
departs from unity, and how even the order of the lines on the pattern can change
with changes in c/a.

Another graphical method of indexing tetragonal patterns has been devised
by Bunn [10.2]. Like the Hull-Davey chart, a Bunn chart consists of a network of
curves, one for each value of hkl, but the curves are based on somewhat different
functions of hkl and c/a than those used by Hull and Davey, with the result that

=B 5 i

n
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the curves are less crowded in certain regions of the chart. The Bunn chart is
accompanied by a logarithmic scale of d values, and the combination of chart and
scale is used in exactly the same way as a Hull-Davey chart and scale. Bunn
charts may be purchased [10.3] or constructed from numerical data in [G.11, vol.
2, p. 207].

Hexagonal System
Patterns of hexagonal crystals can also be indexed by graphical methods, since the
hexagonal unit cell, like the tetragonal, is characterized by two variable parameters,

a and c. The plane-spacing equation is
i_‘_i_h2+hk+k2+{_2_

d* 3 a? c?

After some manipulation, this becomes

2
2logd = 2loga — log[i(h2 + hk + k*) + ! :I,
3 (c/a)?

which is of exactly the same form as Eq. (10-4) for the tetragonal system. A Hull-
Davey chart for the hexagonal system can therefore be constructed by plotting the
variation of log [$(h*> + hk + k?) + 1?/(c/a)*] with c/a. A Bunn chart may also
be constructed for this system. Special charts for hexagonal close-packed lattices
may also be prepared by omitting all curves for which (h + 2k) is an integral
multiple of 3 and / is odd.

The powder pattern of zinc made with Cu Ka radiation (Fig. 3-13) will serve
to illustrate how the pattern of a hexagonal substance is indexed. Thirteen lines
were observed on this pattern; their sin? 0 values and relative intensities are listed
in Table 10-2. A fit was obtained on a Hull-Davey chart for hexagonal close-
packed lattices at an approximate c/a ratio of 1.87. The chart lines disclosed the
indices listed in the fourth column of the table. In the case of line 5, two chart lines
(10-3 and 11 -0) almost intersect at ¢/a = 1.87, so the observed line is evidently
the sum of two lines, almost overlapping, one from the (10 - 3) planes and the other
from (11-0) planes. The same is true of line 11. Four lines on the chart, namely,
20-0,10-4,21-0, and 20 -4, do not appear on the pattern, and it must be inferred
that these are too weak to be observed. On the other hand, all the observed lines
are accounted for, so we may conclude that the lattice of zinc is actually hexagonal
close-packed. The next step is to calculate the lattice parameters. Combination
of the Bragg law and the plane-spacing equation gives

2[4 (B + hk + k?) N 12

4 [3 a* cz]’
where 22/4 has a value of 0.594 A2 for Cu K radiation. Writing this equation out
for the two highest-angle lines, namely, 12 and 13, we obtain:

0.806 = 0.594 <§ 7 + i) .

¢?

a’
0.879 = 0.594 G S i).

sin? 0 =

2 ¢

Q
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Table 10-2
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Simultaneous solution of these two equations gives a = 2.66 A, ¢ = 4.94 A, and
cla = 1.86.

Rhombohedral System

Rhombohedral crystals are also characterized by unit cells having two parameters,
in this case @ and «. No new chart is needed, however, to index the patterns of
rhombohedral substances, because, as mentioned in Sec. 2-4, any rhombohedral
crystal may be referred to hexagonal axes. A hexagonal Hull-Davey or Bunn
chart may therefore be used to index the pattern of a rhombohedral crystal. The
indices so found will, of course, refer to a hexagonal cell, and the method of
converting them to rhombohedral indices is described in Appendix 4.

We can conclude that the pattern of any two-parameter crystal (tetragonal,
hexagonal, or rhombohedral) can be indexed on the appropriate Hull-Davey or
Bunn chart. If the structure is known, the procedure is quite straightforward. The
best method is to calculate the c/a ratio from the known parameters, lay a straight-
edge on the chart to discover the proper line sequence for this value of ¢/a, calculate
the value of sin? @ for each line from the indices found on the chart, and then
determine the indices of the observed lines by a comparison of calculated and
observed sin? 6 values.

If the structure is unknown, the problem of indexing is not always so easy as
it seems in theory. The most common source of trouble is the presence of extra-
neous lines, as defined in Sec. 10-2, in the observed pattern. Such lines can be very
confusing and, if any difficulty in indexing is encountered, every effort should be
made to eliminate them from the pattern, either experimentally or by calculation.
In addition, the observed sin? @ values usually contain systematic errors which
make a simultaneous fit of all the pencil marks on the paper strip to curves on the
chart impossible, even when the paper strip is at the correct c/a position. Because
of these errors, the strip has to be shifted slightly from line to line in order to make
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successive pencil marks coincide with curves on the chart. Two important rules
must always be kept in mind when using Hull-Davey or Bunn charts:

1. Every mark on the paper strip must coincide with a curve on the chart, except
for extraneous lines. A structure which accounts for only a portion of the observed
lines is not correct: all the lines in the pattern must be accounted for, either as due
to the structure of the substance involved or as extraneous lines.

2. There need not be a mark on the paper strip for every curve on the chart,
because some lines may have zero intensity or be too weak to be observed.

Orthorhombic, Monoclinic, and Triclinic Systems

Substances with these low-symmetry structures yield powder patterns which are
almost impossible to index by graphical methods, although the patterns of some
orthorhombic crystals have been indexed by a combination of graphical and
analytical methods. The essential difficulty is the large number of variable param-
eters involved. In the orthorhombic system there are three such parameters
(a, b, ¢), in the monoclinic four (a, b, ¢, B), and in the triclinic six (a, b, c,a, B, y).
If the structure is known, patterns of substances in these crystal systems can be
indexed by comparison of the observed sin? 6 values with those calculated for all
possible values of hkl.

10-5 INDEXING PATTERNS OF NONCUBIC CRYSTALS
(ANALYTICAL METHODS)

Analytical methods of indexing involve arithmetical manipulation of the observed

sin? @ values in an attempt to find certain relationships among them. Since each

crystal system is characterized by particular relationships between sin? 8 values,

recognition of these relationships identifies the crystal system and leads to a solution

of the line indices. These analytical methods are due mainly to Hesse and Lipson
[10.4, 10.5, G.8, G.32, G.17].

Tetragonal System
Here the sin? 6 values must obey the relation:

sin? 8 = A(h* + k*) + CI3, (10-7)

where 4 (= 1?/4a%) and C (= 1%/4c?) are constants for any one pattern. The
problem is to find these constants, since, once found, they will disclose the cell
parameters a and ¢ and enable the line indices to be calculated. The value of 4 is
obtained from the hk0 lines. When / = 0, Eq. ( 10-7) becomes

sin? 0 = A(h? + k?).

The permissible values of (h* + k2) are 1, 2, 4, 5, 8, etc. Therefore the kO lines
must have sin? 6 values in the ratio of these integers, and A will be some number
which is 1, 4, 1, , 4, etc., times the sin? 6 values of these lines. C is obtained from
the other lines on the pattern and the use of Eq. ( 10-7) in the form

sin? @ — A(h? + k?) = CI2.
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Differences represented by the left-hand side of the equation are set up, for various
assumed values of 4 and k, in an attempt to find a consistent set of C/? values,
which must be in the ratio 1, 4, 9, 16, etc. Once these values are found, C can be
calculated.

Hexagonal System

For hexagonal crystals, an exactly similar procedure is used. In this case, sin? 8
values are given by

sin? @ = A(h* + hk + k?) + CI?,

where A = A%/3a* and C = 1%/4c%. Permissible values of (h* + hk + k?) are
tabulated in Appendix 10; they are 1, 3, 4, 7, 9, etc. The indexing procedure is
best illustrated by means of a specific example, namely, the powder pattern of
zinc, whose observed sin? 0 values are listed in Table 10-2. We first divide the
sin? @ values by the integers 1, 3, 4, etc., and tabulate the results, as shown by
Table 10-3, which applies to the first six lines of the pattern. We then examine
these numbers, looking for quotients which are equal to one another or equal to
one of the observed sin? 6 values. In this case, the two starred entries, 0.112 and
0.111, are the most nearly equal, so we assume that lines 2 and 5 are hk0 lines. We
then tentatively put 4 = 0.112 which is equivalent to saying that line 2 is 100.
Since the sin? @ value of line 5 is very nearly 3 times that of line 2, line 5 should be
110. To find the value of C, we must use the equation

sin 0 — A(h* + hk + k*) = CI>.

We now subtract from each sin? 8 value the values of 4 (= 0.112), 34 (= 0.336),
44 (= 0.448), etc., and look for remainders (C/?) which are in the ratio of 1, 4, 9,
16, etc. These figures are given in Table 10-4. Here the five starred entries are of
interest, because these numbers (0.024, 0.097, 0.221, and 0.390) are very nearly in
the ratio 1, 4,9, and 16. We therefore put 0.024 = C(1)?,0.097 = C(2),0.221 =
C(3)?, and 0.390 = C(4)>. This gives C = 0.024 and immediately identifies line
1 as 002 and line 6 as 004. Since line 3 has a sin” 6 value equal to the sum of A4
and C, its indices must be 101. Similarly, the indices of lines 4 and 5 are found to
be 102 and 103, respectively. In this way, indices are assigned to all the lines on the
pattern, and a final check on their correctness is made in the usual manner, by a
comparison of observed and calculated sin? 0 values.

Table 10-3

- , 2 -
Line s;nzg snr:a3 H sin 8 sin @ hkl

R
~

0.097 0.032 0.024 0.014

|

2 0.112° | 0.037 0.028 | 0.016 | 100
3 0.136 0.045 0.034 | 0.019

4 0.209 0.070' 0.052 0.030

5 0.332 0.111 0.083 | 0.047 | 110
3 0.390 0.130 0.098 | 0.056
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Table 10-4
Line sln20 sln29—.~l lin29 —34 hkl
1 0.097" 002
2 | o.m2 | o.000, 100
3 | 0.136 | o0.024 101
4 | 020 | o0.097 102
5 | 0.332, | o0.221 (10, 103
6 0.390 0.278 0.054 004

Orthorhombic System
The basic equation governing the sin? 0 values is now

sin® 0 = Ah® + Bk* + CI,
The indexing problem is considerably more difficult here, in that three unknown
constants, 4, B, and C, have to be determined. The general procedure, which is
too lengthy to illustrate here, is to search for significant differences between various
pairs of sin? 0 values. For example, consider any two lines having indices #k0 and
hk1, with hk the same for each, such as 120 and 121 ; the difference between their
sin? 0 values is C. Similarly, the difference between the sin? 0 values of two lines
such as 310 and 312 is 4C, and so on. If the structure is such that there are many
lines missing from the pattern, because of a zero structure factor for the corre-
sponding planes, then the difficulties of indexing are considerably increased, inas-
much as the missing lines may be the very ones which would supply the most easily
recognized clues if they were present. Despite such difficulties, this analytical
method has been applied successfully to a number of orthorhombic patterns. One
requisite for its success is fairly high accuracy in the sin? 0 values (at least +0.0005),
and the investigator should therefore correct his observations for systematic errors
before attempting to index the pattern.

Monoclinic and Triclinic Systems

These crystal systems involve four and six independent constants, respectively.
The corresponding powder patterns are of great complexity and may contain more
than a hundred lines. Such patterns are seldom solved without the aid of the
computer.

General

Analytical methods of indexing are search procedures designed to reveal certain
numerical relationships among the observed sin? 0 values. The digital computer is
therefore a natural tool to use, and many computer programs have been written
for the indexing of powder patterns. Klug and Alexander [G.39] have surveyed
the general problems involved and give references to specific programs.
Computer indexing is not always successful. The computer may yield not one
but many sets of indices that approximately conform to the input data; it is then
up to the investigator’s experience and Judgment to select the correct set. Extra-
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neous diffraction lines and inaccurate sin? 0 values can mislead a computer as
well as a human searcher.

The powder patterns of low-symmetry substances are so difficult to solve that
the crystal structures of such substances are almost always determined by exam-
ining a single crystal, by either the rotating-crystal method or one of its variations.
With these methods the x-ray crystallographer can, without much difficulty,
determine the shape and size of an unknown unit cell, no matter how low its
symmetry. Many substances are very difficult to prepare in single-crystal form,
but, on the other hand, if the substance involved is one of low symmetry, the time
spent in trying to obtain a single crystal is usually more fruitful than the time spent
in trying to solve the powder pattern. The single-crystal specimen need not be
large: a crystal as small as 0.1 mm in any dimension can be successfully handled
and will give a satisfactory diffraction pattern.

10-6 THE EFFECT OF CELL DISTORTION ON THE POWDER PATTERN

At this point we might digress slightly from the main subject of this chapter, and
examine some of the changes produced in a powder pattern when the unit cell of
the substance involved is distorted in various ways. As we have already seen, there
are many more lines on the pattern of a substance of low symmetry, such as
triclinic, than on the pattern of a substance of high symmetry, such as cubic, and
we may take it as a general rule that any distortion of the unit cell which decreases
its symmetry, in the sense of introducing additional variable parameters, will
increase the number of lines on the powder pattern.

Figure 10-5 graphically illustrates this point. On the left is the calculated
diffraction pattern of the body-centered cubic substance whose unit cell is shown
at the top. The line positions are computed for a = 4.00 A and Cr Ka radiation.
If this cell is expanded or contracted uniformly but still remains cubic, the diffrac-
tion lines merely shift their positions but do not increase in number, since no
change in cell symmetry is involved. However, if the cubic cell is distorted along
only one axis, then it becomes tetragonal, its symmetry decreases, and more
diffraction lines are formed. The center pattern shows the effect of stretching the
cubic cell by 4 percent along its [001] axis, so that c is now 4.16 A. Some lines are
unchanged in position, some are shifted, and new lines have appeared. If the
tetragonal cell is now stretched by 8 percent along its [010] axis, it becomes
orthorhombic, with @ = 4.00 A, b = 4.32 A, and ¢ = 4.16 A, as shown on the
right. The result of this last distortion is to add still more lines to the pattern. The
increase in the number of lines is due essentially to the introduction of new plane
spacings, caused by nonuniform distortion. Thus, in the cubic cell, the (200),
(020), and (002) planes all have the same spacing and only one line is formed,
called the 200 line, but this line splits into two when the cell becomes tetragonal,
since now the (002) plane spacing differs from the other two. When the cell be-
comes orthorhombic, all three spacings are different and three lines are formed.

Changes of this nature are not uncommon among phase transformations and
ordering reactions. For example, the powder pattern of slowly cooled plain carbon
steel shows lines due to ferrite (body-centered cubic) and cementite (Fe,C,
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orthorhombic). When the same steel is quenched from the austenite region, the
phases present are martensite (body-centered tetragonal) and, possibly, some
untransformed austenite (face-centered cubic). The a and ¢ parameters of the
martensite cell do not differ greatly from the a parameter of the ferrite cell (see
Fig. 12-5). The result is that the diffraction pattern of a quenched steel shows pairs
of martensite lines occurring at about the same 26 positions as the individual lines
of ferrite in the previous pattern. (These line pairs, however, are seldom resolved;
martensite contains so much microstrain that each line of a pair is so broad that it
merges with its neighbor.) If the quenched steel is now tempered, the martensite
will ultimately decompose into ferrite and cementite, and each pair of martensite
lines will coalesce into a single ferrite line. Somewhat similar effects can be pro-
- duced in a copper-gold alloy having the composition represented by the formula
AuCu. This alloy is cubic in the disordered state but becomes either tetragonal or
orthorhombic when ordered, depending on the ordering temperature (see Sec. 13-3).

The changes produced in a powder pattern by cell distortion depend, in degree,
on the amount of distortion. If the latter is small, the pattern retains the main
features of the pattern of the original undistorted cell. Thus, in Fig. 10-5, the
nineteen lines of the orthorhombic pattern fall into the six bracketed groups
shown, each group corresponding to one of the single lines on the cubic pattern.
In fact, an experienced crystallographer, if confronted with this orthorhombic
pattern, might recognize this grouping and guess that the unit cell of the substance
involved was not far from cubic in shape, and that the Bravais lattice was either
simple or body-centered, since the groups of lines are spaced in a fairly regular
manner. But if the distortion of the cubic cell had been much larger, each line of
the original pattern would split into such widely separated lines that no features of
the original pattern would remain.

10-7 DETERMINATION OF THE NUMBER OF ATOMS IN A UNIT CELL

To return to the subject of structure determination, the next step after establishing
the shape and size of the unit cell is to find the number of atoms in that cell,
because the number of atoms must be known before their positions can be deter-
mined. To find this number we use the fact that the volume of the unit cell,
calculated from the lattice parameters by means of the equations given in Appendix
3, multiplied by the measured density of the substance equals the weight of all the
atoms in the cell. From Eq. (3-7), we have

pV’
A = ,
2> 1.66042
where 3 A4 is the sum of the atomic weights of the atoms in the unit cell, p is the
density (gm/cm?®), and ¥’ is the volume of the unit cell (A®). If the substance is an
element of atomic weight A, then

> A = n;A,

where 7, is the number of atoms per unit cell. If the substance is a chemical com-
pound, or an intermediate phase whose composition can be represented by a
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10-8 Determination of atom positions 343

simple chemical formula, then
Z A= nZM’

where n, is the number of “molecules™ per unit cell and M the molecular weight.
The number of atoms per cell can then be calculated from n, and the composition
of the phase.

When determined in this way, the number of atoms per cell is always an integer,
within experimental error, except for a very few substances which have “defect
structures.” In these substances, atoms are simply missing from a certain fraction
of those lattice sites which they would be expected to occupy, and the result is a
nonintegral number of atoms per cell. FeO and the B phase in the Ni-Al system
are examples.

10-8 DETERMINATION OF ATOM POSITIONS

We now have to find the positions of a known number of atoms in a unit cell of
known shape and size. To solve this problem, we must make use of the observed
relative intensities of the diffracted beams, since these intensities are determined by
atom positions. In finding the atom positions, however, we must again proceed by
trial and error, because there is no known general method of directly calculating
atom positions from observed intensities.

To see why this is so, we must consider the two basic equations involved,

namely,
I + cos? 26
I =|FPp|—2%Z , 4-19
FI°p <sin2 6 cos 0) #-19)

which gives the relative intensities of the reflected beams, and

N
F = Zf;'eZni(hu,.+ku,.+lw,,), (4_]1)
1

which gives the value of the structure factor F for the hk/ reflection in terms of the
atom positions uvw. Since the relative intensity /, the multiplicity factor p, and
the Bragg angle 6 are known for each line on the pattern, we can find the value of
|F| for each reflection from Egq. (4-19). But |F| measures only the relative ampli-
tude of each reflection, whereas, in order to use Eq. (4-11) for calculating atom
positions, we must know the value of F, which measures both the amplitude and
phase of one reflection relative to another. This is the crux of the problem. The
intensities of two reflected beams are proportional to the squares of their ampli-
tudes but independent of their relative phase. Since all we can measure is intensity,
we can determine amplitude but not phase, which means that we cannot, in general,
compute the structure factor but only its absolute value. This ““phase problem,”
which had baffled crystallographers for years, has now been partially solved, in
the sense that direct methods of structure determination, applicable to some
structures, now exist. These methods have a success rate of 80 to 90 percent when
applied to crystals with a hundred atoms or less per unit cell. Protein crystals,
however, contain thousands of atoms per cell. No direct method has yet been
found powerful enough to solve the structure of any crystal.
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Atom positions, therefore, can be determined only by trial and error. A set of
atom positions is assumed, the intensities corresponding to these positions are
calculated, and the calculated intensities are compared with the observed ones,
the process being repeated until satisfactory agreement is reached. The problem
of selecting a structure for trial is not as hopelessly broad as it sounds, since the
investigator has many aids to guide him. Foremost among these is the accumulated
knowledge of previously solved structures. From these known structures he may
be able to select a few likely candidates, and then proceed on the assumption that
his pnknown structure is the same as, or very similar to, one of these known ones.
A great many known structures may be classified into groups according to the
kind of bonding (ionic, covalent, metallic, or mixtures of these) which holds the

-atoms together, and a selection among these groups is aided by a knowledge of

the probable kind of atomic bonding in the unknown phase, as judged from the
positions of its constituent elements in the periodic table. For example, suppose
the phase of unknown structure has the chemical formula AB, where A is strongly
electropositive and B strongly electronegative, and that its powder pattern is
characteristic of a simple cubic lattice. Then the bonding is likely to be ionic, and
the CsCl structure is strongly suggested. But the FeSi structure shown in Fig. 2-20
is also a possibility. In this particular case, one or the other can be excluded by a
density measurement, since the CsCl cell contains one “‘molecule’” and the FeSi
cell four. If this were not possible, diffracted intensities would have to be calculated
on the basis of each cell and compared with the observed ones. It is this simple
kind of structure determination, illustrated by an example in the next section, that
the metallurgist should be able to carry out unaided.

Needless to say, many structures are too complex to be solved by this simple
approach and the crystallographer must turn to more powerful methods. Chief
among these are space-group theory and Fourier series. Although any complete
description of these subjects is beyond the scope of this book, a few general remarks
may serve to show their utility in structure determination. The theory of space
groups, one of the triumphs of mathematical crystallography, relates crystal
symmetry, on the atomic scale, to the possible atomic arrangements which possess
that symmetry. For example, if a given substance is known to be hexagonal and
to have n atoms in its unit cell, then space-group theory lists all possible arrange-
ments of n atoms which will have hexagonal symmetry. This listing of possible
arrangements aids tremendously in the selection of trial structures. A further
reduction in the number of possibilities can then be made by noting the indices of
the reflections absent from the diffraction pattern. By such means alone, i.e.,
before any detailed consideration is given to relative diffracted intensities, space-
group theory can often exclude all but two or three possible atomic arrangements.
There are 230 different space groups, and the possible atomic arrangements in
each group are listed in [G.11, Vol. 1].

A Fourier series is a type of infinite trigonometric series by which any kind of
periodic function may be expressed. Now the one essential property of a crystal
is that its atoms are arranged in space in a periodic fashion. But this means that
the density of electrons is also a periodic function of position in the crystal, rising
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to a maximum at the point where an atom is located and dropping to a low value
in the region between atoms. To regard a crystal in this manner, as a positional
variation of electron density rather than as an arrangement of atoms, is particularly
appropriate where diffraction is involved, in that x-rays are scattered by electrons
and not by atoms as such. Since the electron density is a periodic function of
position, a crystal may be described analytically by means of Fourier series. This
method of description is very useful in structure determination because it can be
shown that the coefficients of the various terms in the series are related to the F
values of the various x-ray reflections. But such a series is not of immediate use,
since the structure factors are not usually known both in magnitude and phase.
However, another kind of series has been devised, called the Patterson function,
whose coefficients are related to the experimentally observable |F| values and which
gives, not electron density, but information regarding the various interatomic
vectors in the unit cell. This information is frequently enough to determine the
phase of the various structure factors; then the first kind of series can be used to
map out the actual electron density throughout the cell and thus disclose the atom
positions.

10-9 EXAMPLE OF STRUCTURE DETERMINATION

As a simple example, we will consider an intermediate phase which occurs in the
cadmium-tellurium system. Chemical analysis of the specimen, which appeared
essentially one phase under the microscope, showed it to contain 46.6 weight per-
cent Cd and 53.4 weight percent Te. This is equivalent to 49.8 atomic percent Cd
and can be represented by the formula CdTe. The specimen was reduced to powder
and a diffraction pattern obtained with a Debye-Scherrer camera and Cu Ko
radiation.

The observed values of sin? @ for the first 16 lines are listed in Table 10-5,
together with the visually estimated relative line intensities. This pattern can be
indexed on the basis of a cubic unit cell, and the indices of the observed lines are
given in the table. The lattice parameter, calculated from the sin? 0 value for the
highest-angle line, is 6.46 A.

The density of the specimen, as determined by weighing a quantity of the
powder in a pyknometer bottle, was 5.82 gm/cm>. We then find, from Eq. (3-7),
that
(5.82)(6.46)°

1.66042

A= = 945,
Since the molecular weight of CdTe is 240.02, the number of “molecules” per unit
cell is 945/240.02 = 3.94, or 4, within experimental error.

At this point, we know that the unit cell of CdTe is cubic and that it contains 4
“molecules” of CdTe, i.e., 4 atoms of cadmium and 4 atoms of tellurium. We must
now consider possible arrangements of these atoms in the unit cell. First we
examine the indices listed in Table 10-5 for evidence of the Bravais lattice. Since
the indices of the observed lines are all unmixed, the Bravais lattice must be face-
centered. (Not all possible sets of unmixed indices are present, however: 200, 420,
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Table 10-5

; . v X
Line Intensity sin_ @ hkl

1 s 0.0462 111

2 Vs 0.1198 220

3 vs 0.1615 311

4 vw 0.1790 222

5 m 0.234 400

é m 0.275 331

7 5 0.346 422

8 m 0.391 511, 333
9 w 0.461 440
10 m 0.504 531

1n m 0.575 620
12 w 0.616 533
13 w 0.688 Ad
14 m 0.729 711, 551
15 vs 0.799 642
16 s 0.840 731, 553

600, 442, 622, and 640 are missing from the pattern. But these reflections may be
too weak to be observed, and the fact that they are missing does not invalidate our
conclusion that the lattice is face-centered.) Now there are two common face-
centered cubic structures of the AB type, i.e., containing two different atoms in
equal proportions, and both contain four “molecules” per unit cell: these are the
NaCl structure [Fig. 2-18(b)] and the zinc-blende form of ZnS [Fig. 2-19(b)].
Both of these are logical possibilities even though the bonding in NaCl is ionic and
in ZnS covalent, since both kinds of bonding have been observed in telluride
structures.

The next step is to calculate relative diffracted intensities for each structure
and compare them with experiment, in order to determine whether or not one of
these structures is the correct one. If CdTe has the NaCl structure, then its
structure factor for unmixed indices [see Example () of Sec. 4-6] is given by

FZ = ]6(de +fTe)2’ if(h + k + [) iS even,
F2 = 16(feq — fr)?,  if(h + k + 1) is odd.

On the other hand, if the ZnS structure is correct, then the structure factor for
unmixed indices (see Sec. 4-13) is given by

IFI> = 16(f& + f3).,  if (h + k + 1) is odd,
IF1? = 16(fcq — fro)?, if (h + k + 1) is an odd multiple of 2,  (10-9)
[FI1? = 16(fcq + fro)?, if (h + k + 1) is an even multiple of 2.

(10-8)

Even before making a detailed calculation of relative diffracted intensities by
means ol Eq. (4-19), we can almost rule out the NaCl structure as a possibility
simply by inspection of Eqs. (10-8). The atomic numbers of cadmium and tel-
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lurium are 48 and 52, respectively, so the value of (foy + f1.)? is several hundred
times greater than the value of (foq — f1.)? for all values of sin 6/A. Then, if
CdTe has the NaCl structure, the 111 reflection should be very weak and the 200
reflection very strong. Actually, 111 is strong and 200 is not observed. Further
evidence that the NaCl structure is incorrect is given in the fourth column of
Table 10-6, where the calculated intensities of the first eight possible lines are
listed: there is no agreement whatever between these values and the observed
intensities.

On the other hand, if the ZnS structure is assumed, intensity calculations lead
to the values listed in the fifth column. The agreement between these values and
the observed intensities is excellent, except for a few minor inconsistencies among

-the low-angle reflections, and these are due to neglect of the absorption factor. In

particular, we note that the ZnS structure satisfactorily accounts for all the missing
reflections (200, 420, etc.), since the calculated intensities of these reflections are
all extremely low. We can therefore conclude that CdTe has the structure of the
zinc-blende form of ZnS.

Table 10-6
1 2 3 ; 4 | 5
Observed Calculated intensity
Line hkl .
intensity NaCl structure ZnS structure

i 111 s 0.05 12.4
200 nil 13.2 0.03

2 220 vs 10.0 -—1— 10.0

3 3n vs 0.02 6.2
4 222 vw 3.5 0.007

5 400 m 1.7 1.7

é 331 m 0.01 2.5
420 nil 4.6 0.01

7 422 s | ... .. 3.4

8 511, 333 m | ... .., 1.8

9 440 2 1.1

10 531 m ... .. 2.0
600, 442 nil | ... L. 0.005

11 620 m ... 1.8

12 533 w oL 0.9
622 nil L. 0.004

13 444 L 0.6

14 711, 551 m | ..., 1.8
640 nil | ... .. 0.005

15 642 vs L 4.0

16 731, 553 (R 3.3

(N.B. Calculated intensities have been adjusted so that the 220 line has an
intensity of 10.0 for both structures.)




348 Determination of crystal structure

After a given structure has been shown to be in accord with the diffraction
data, it is advisable to calculate the interatomic distances involved in that structure.
This calculation not only is of interest in itself, but serves to disclose any gross
errors that may have been made, since there is obviously something wrong with a
proposed structure if it brings certain atoms impossibly close together. In the
present structure, the nearest neighbor to the Cd atom at 0 0 0 is the Te atom at

} 1 1. The Cd-Te interatomic distance is therefore \/3 a/4 = 2.80 A. For com-
parison, we can calculate a “theoretical” Cd-Te interatomic distance simply by
averaging the distances of closest approach in the pure elements. In doing this, we
regard the atoms as rigid spheres in contact, and ignore the effects of coordination
number and type of bonding on atom size. These distances of closest approach are

- 2.98 A in pure cadmium and 2.86 A in pure tellurium, the average being 2.92 A.
The observed Cd-Te interatomic distance is 2.80 A, or some 4.1 percent smaller
than the calculated value; this difference is not unreasonable and can be largely
ascribed to the covalent bonding which characterizes this structure. In fact, it is
a general rule that the A-B interatomic distance in an intermediate phase A,B, is
always somewhat smaller than the average distance of closest approach in pure A
and pure B, because the mere existence of the phase shows that the attractive
forces between unlike atoms is greater than that between like atoms. If this were
not true, the phase would not form.

PROBLEMS

*10-1 The powder pattern of aluminum, made with Cu Ka radiation, contains ten lines,
whose sin? @ values are 0.1118, 0.1487, 0.294, 0.403, 0.439, 0.583, 0.691, 0.727, 0.872,
and 0.981. Index these lines and calculate the lattice parameter.

10-2 A pattern is made of a cubic substance with unfiltered chromium radiation. The
observed sin? @ values and intensities are 0.265(m), 0.321(vs), 0.528(w), 0.638(s), 0.793(s),
and 0.958(vs). Index these lines and state which are due to Ka and which to KB radiation.
Determine the Bravais lattice and lattice parameter. Identify the substance by reference
to Appendix 5.

10-3 Construct a Hull-Davey chart, and accompanying sin® @ scale, for hexagonal
close-packed lattices. Use two-range semilog graph paper, 8% x 11 in. Cover a ¢/a range
of 0.5 to 2.0, and plot only the curves 00-2, 10-0,10-1, 10-2, and 11 - 0.

*10-4 Use the chart constructed in Prob. 10-3 to index the first five lines on the powder
pattern of a-titanium. With Cu Ka radiation, these lines have the following sin? 8 values:
0.091, 0.106, 0.117, 0.200, and 0.268.

In each of the following problems the powder pattern of an element is represented by the
observed sin? @ values of the first seven or eight lines on the pattern, made with Cu Ka
radiation. In each case, index the lines, find the crystal system, Bravais lattice, and approx-




