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Geometry of Crystals

2-1 INTRODUCTION .

enables them to diffract x-rays. We must also consider particular crystals of
various kinds and how the very large number of crystals found in nature are clas-
sified into a relatively small number of groups. Finally, we will examine the ways
in which the orientation of lines and planes in crystals can be represented in terms
of symbols ot in graphical form.

Crystallography is a very broad subject. In this book we are concerned only
with its si'mpler aspects: how atoms are arranged in some common crystals and
how this arrangement determines the way in which a particular crystal diffracts
X-rays. Readers who need a deeper knowledge of crystallography should consult
such books as those by Phillips [G.38], Buerger [G.35], and Kelly and Groves
[G.33].

2-2 LATTICES

are parallel and each face is a parallelogram. The Space-dividing planes will inter-
sect each other in a set of lines (Fig. 2-1), and these lines in turn intersect in the
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Fig. 2-1 A point lattice.

H
set of points referred to above. A set of points so formed has an important pro-
perty: it constitutes a point lattice, which is defined as an array of points in space
so arranged that each point has identical surroundings. By ‘“‘identical surroundings”
we mean that the lattice of points, when viewed in a particular direction from one
lattice point, would have exactly the same appearance when v1ewed in the same
direction from any other lattice point.

Since all the cells of the lattice shown in Fig. 2-1 are identical, we may choose
any one, for example the heavily outlined one, as a unit cell. The size and shape of
the unit cell can in turn be described by the three vectors* a, b, and ¢ drawn from
one corner of the cell taken as origin (Fig. 2-2). These vectors define the cell and
are called the crystallographic axes of the cell. They may also be described in
terms of their lengths (a, b, ¢) and the angles between them (o, B, y). These lengths
and angles are the /lattice constants or lattice parameters of the unit cell.

Fig. 2-2 A unit cell.

* Vectors are here represented by boldface symbols. The same symbol in italics stands for
the absolute value of the vector.
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Note that the vectors a, b, ¢ define, not only the unit cell, but also the whole
point lattice through the translations provided by these vectors. In other words,
the whole set of points in the lattice can be produced by repeated action of the
vectors a, b, ¢ on one lattice point located at the origin, or, stated alternatively,
the vector coordinates of any point in the lattice are Pa, Ob, and Rc, where P, Q,
and R are whole numbers. It follows that the arrangement of points in a point
lattice is absolutely periodic in three dimensions, points being repeated at regular
intervals along any line one chooses to draw through the lattice.

2-3 CRYSTAL SYSTEMS

In dividing space by three sets of planes, we can of course produce unit cells of
various shapes, depending on how we arrange the planes. For example, if the
planes in the three sets are all equally spaced and mutually perpendicular, the unit
cell is cubic. In this case the vectors a, b, c are all equal and at right angles to one
another, or a =b=cand a = B =19y =90 By thus giving special values to
the axial lengths and angles, we can produce unit cells of various shapes and
therefore various kinds of point lattices, since the points of the lattice are located
at the cell corners. It turns out that only seven different kinds of cells are necessary
to include all the possible point lattices. These correspond to the seven crystal
Systems into which all crystals can be classified. These systems are listed in Table
2-1. (Some writers consider the rhombohedral system as a subdivision of the
hexagonal, thus reducing the number of crystal systems to six.)
' Seven different point lattices can be obtained simply by putting points at the
corners of the unit cells of the seven crystal systems. However, there are other

also forms a point lattice. Similarly, another point lattice can be based on a cubic
unit cell having lattice points at each corner and in the center of each face.

The fourteen Bravais lattices are described in Table 2-]1 and illustrated in
Fig. 2-3, where the symbols P, F, I, etc., have the following meanings. We must
first distinguish between simple, or primitive, cells (symbol P or R) and non-
Primitive cells (any other symbol): primitive cells have only one lattice point per
cell while nonprimitive have more than one. A lattice point in the interjor of a cell
“belongs” to that cell, while one in a cell face is shared by two cells and one at a
corner is shared by eight. The number of lattice points per cell is therefore given by

M=+t X @-1)

where N; = number of interior points, N, = number of points on faces, and
N. = number of points on corners. Any cell containing lattice points on the
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Table 2-1
Crystal Systems and Bravais Lattices

(The symbol # means that equality is not required by symmetry. Accidental equality
may occur, as shown by an example in Sec. 2-4.)

. Bravais Lattice
f
System Axial lengths and angles lattica symbol
- Simple P
Cubic Three equal axes at right angles Bods—centered I
a=b=c, a=p=7=90°
Face-centered F
Three axes at right angles, two equal Simple P
Tetragonal a=b<#c, a=p=7=90° Body-centered I
Simple P
Orthorhombic Three unequal axes at right angles Body-centered |
a#b#c, a=p=y=90F° Base-centered C
Face-centered F
« | Th I Iy incli
Rhombohedral” | oy "o X% squelly inclined | Simple R

Two equal coplanar axes at 120°,
Hexagonal third axis at right angles Simple P
a=b#c, a=p=90° 7 =120°

Monoclinic Three unequal axes, .
one pair not at right angles Sinpla 2
atbrc, a=7=90°#p Base-centered
Triclinic Three unequal axes, unequally inclined
and none at right angles Simple P

a#b#c, a#B#¥ #90°

* Also called trigonal.

corners only is therefore primitive, while one containing additional points in the
interior or on faces is nonprimitive. The symbols F and I refer to face-centered
and body-centered cells, respectively, while 4, B, and C refer to base-centered cells,
centered on one pair of opposite faces 4, B, or C. (The A face is the face defined
by the b and ¢ axes, etc.) The symbol R is used especially for the rhombohedral
system. In Fig. 2-3, axes of equal length in a particular system are given the same
symbol to indicate their equality, e.g., the cubic axes are all marked a, the two equal
tetragonal axes are marked a and the third one c, etc. '

At first glance, the list of Bravais lattices in Table 2-1 appears incomplete.
Why not, for example, a base-centered tetragonal lattice? The full lines in Fig. 2-4
dell.neate such a cell, centered on the C face, but we see that the same array of
lattice points can be referred to the simple tetragonal cell shown by dashed lines,
SO that the base-centered arrangement of points is not a new lattice. However, the
base.-centered cell is a perfectly good unit cell and, if we wish, we may choose to

~use 1t rather than the simple cell. Choice of one or the other has certain con-
sequences, which are described later (Problem 4-3).
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SIMPLE BODY-CENTERED FACE-CENTERED
CUBIC (P) CUBIC (I) CUBIC (F)

N /)
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SIMPLE BODY-CENTERED SIMPLE BODY-CENTERED
TETRAGONAL TETRAGONAL ORTHORHOMBIC ORTHORHOMBIC
(I (P) (I

BASE-CENTERED FACE-CENTERED RHOMBOHEDRAL HEXAGONAL
ORTHORHOMBIC ORTHORHOMBIC (R) P)
(©€) (F)

SIMPLE BASE-CENTERED TRICLINIC (P)
MONOQCLINIC (P) MONOCLINIC (C)

Fig. 2-3 The fourteen Bravais lattices.
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Fig. 2-5 Extension of lattice points thfough space by the unit cell vectors a, b, c.

The lattice points in a nonprimitive unit cell can be extended through space by
repeated applications of the unit-cell vectors a, b, c just like those of a primitive
cell. We may regard the lattice points associated with a unit cell as being translated
one by one or as a group. In either case, equivalent lattice points in adjacent unit
cells are separated by one of the vectors a, b, c, wherever these points happen to be
located in the cell (Fig. 2-5).

2-4 SYMMETRY

Both Bravais lattices and the real crystals which are built up on them exhibit
various kinds of symmetry. A body or structure is said to be symmetrical when its
component parts are arranged in such balance, so to speak, that certain operations
can be performed on the body which will bring it into coincidence with itself,
These are termed symmetry operations. For example, if a body is symmetrical with
respect to a plane passing through it, then reflection of either half of the body in
the plane as in a mirror will produce a body coinciding with the other half. Thus
a cube has several planes of Symmetry, one of which is shown in Fig. 2-6(a).
There are in all four macroscopic* symmetry operations or elements: reflection,

\

* So called to distinguish them from certain microscopic symmetry operations with which
We are not concerned here. The macroscopic elements can be deduced from the angles
between the faces of a well-developed crystal, without any knowledge of the atom arrange-
ment inside the crystal. The microscopic symmetry elements, on the other hand, depend
€ntirely on atom arrangement, and their presence cannot be inferred from the external
development of the crystal,
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Fig. 26 Some symmetry elements of a cube. (@) Reflection plane. A, becomes A4,.
(b) Rotation axes. 4-fold axis: 4, becomes A3; 3-fold axis: 4, becomes A, ; 2-fold axis:
A; becomes A,. (c) Inversion center. A, becomes 4,. (d) Rotation-inversion axis.
4-fold axis: 4, becomes A4} ; inversion center: A} becomes A4,. .

rotation, inversion, and rotation-inversion. A body has n-fold rotational symmetry
about an axis if a rotation of 360°/n brings it into self-coincidence. Thus a cube has
a 4-fold rotation axis normal to each face, a 3-fold axis along each body diagonal,
and 2-fold axes joining the centers of opposite edges. Some of these are shown in
Fig. 2-6(b) where the small plane figures (square, triangle, and ellipse) designate
the various kinds of axes. In general, rotation axes may be 1-, 2-, 3-, 4-, or 6-fold.
A 1-fold axis indicates no symmetry at all, while a 5-fold axis or one of higher
degree than 6 is impossible, in the sense that unit cells having such symmetry
cannot be made to fill up space without leaving gaps.

A body has an inversion center if corresponding points of the body are located
at equal distances from the center on a line drawn through the center. A body
having an inversion center will come into coincidence with itself if every point in
the body is inverted, or “reflected,” in the inversion center. A cube has such a
center at the intersection of its body diagonals [Fig. 2-6(c)]. Finally, a body may
have a rotation-inversion axis, either I-, 2-, 3-, 4-, or 6-fold. If it has an n-fold
rotation-inversion axis, it can be brought into coincidence with itself by a rotation
of 360°/n about the axis followed by inversion in a center lying on the axis. Figure
2-6(d) illustrates the operation of a 4-fold rotation-inversion axis on a cube.

Now, the possession of a certain minimum set of symmetry elements is a
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Table 2-2
Symmetry Elements
System Minimum symmetry elements
Cubic Four 3 - fold rotation axes
Tetragonal One 4 - fold rotation (or rotation - inversion) axis
Orthorhombic Three perpendicular 2-fold rotation (or rotation - inversion) axes
Rhombohedral One 3 = fold rotation (or rotation - inversion) axis
Hexagonal One 6 - fold rotation (or rotation - inversion) axis
Monoclinic One 2- fold rotation (or rotation - inversion) axis
Triclinic None

fundamental property of each crystal system, and one system is distinguished from
another just as much by its symmetry elements as by the values of its axial lengths
and angles. In fact, these are interdependent. For example, the existence of 4-fold
rotation axes normal to the faces of a cubic cell requires that the cell edges be equal
in length and at 90° to one another. On the other hand, a tetragonal cell has only
one 4-fold axis, and this symmetry requires that only two cell edges be equal,
namely, the two that are at right angles to the rotation axis.

The minimum number of symmetry elements possessed by each crystal system
is listed in Table 2-2. Some crystals may possess more than the minimum sym-
metry elements required by the system to which they belong, but none may have
less. The existence of certain symmetry elements often implies the existence of
others. For example, a crystal with three 4-fold rotation axes necessarily has, in
addition, four 3-fold axes and falls in the cubic system.

Symmetry operations apply not only to the unit cells shown in Fig. 2-3, con-
sidered merely as geometric shapes, but also to the point lattices associated with
them. The latter condition rules out the possibility that the cubic system, for
example, could include a base-centered point lattice, since such an array of points
would not have the minimum set of symmetry elements required by the cubic
system, namely four 3-fold rotation axes. Such a lattice would be classified in the
tetragonal system, which has no 3-fold axes and in which accidental equality of the
a and ¢ axes is allowed. '

Crystals in the rhombohedral (trigonal) system can be referred to either a
rhombohedral or a hexagonal lattice. Appendix 4 gives the relation between these
two lattices and the transformation equations which allow the Miller indices of a
plane (see Sec. 2-6) to be expressed in terms of either set of axes.

2-5 PRIMITIVE AND NONPRIMITIVE CELLS

n?. any point lattice a unit cell may be chosen in an infinite number of ways and
'cT|> zontam one or more lattice points per cell. It is important to note that unit
[y Y3 . " . .

> do not “exist™ as such in a lattice: they are a mental construct and can
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accordingly be chosen at our convenience. The conventional cells shown in Fig.
2-3 are chosen simply for convenience and to conform to the symmetry elements
of the lattice. _
Any of the fourteen Bravais lattices may be referred to a primitive unit cell.
For example, the face-centered cubic lattice shown in Fig. 2-7 may be referred to
the primitive cell indicated by dashed lines. The latter cell is rhombohedral, its

axial angle a is 60°, and each of its axes is 1/\/5 times the length of the axes of the
cubic cell. Each cubic cell has four lattice points associated with it, each rhom-
bohedral cell has one, and the former has, correspondingly, four times the volume
of the latter. Nevertheless, it is usually more convenient to use the cubic cell rather
than the rhombohedral one because the former immediately suggests the cubic
symmetry which the lattice actually possesses. Similarly, the other centered non-
primitive cells listed in Table 2-1 are preferred to the primitive cells possible in
their respective lattices. _

Why then do the centered lattices appear in the list of the fourteen Bravais
lattices? If the two cells in Fig. 2-7 describe the same set of lattice points, as they
do, why not eliminate the cubic cell and let the rhombohedral cell serve instead?
The answer is that this cell is a particular rhombohedral cell with an axial angle «
of 60°. In the general rhombohedral lattice no restriction is placed on the angle «;
the result is a lattice of points with a single 3-fold symmetry axis. When « becomes
equal to 60°, the lattice has four 3-fold axes, and this symmetry places it in the
cubic system. The general thombohedral cell is still needed.

If nonprimitive lattice cells are used, the vector from the origin to any point in
the lattice will now have components which are nonintegral multiples of the unit-
cell vectors a, b, c. The position of any lattice point in a cell may be given in terms
of its coordinates; if the vector from the origin of the unit cell to the given point
has components xa, yb, zc, where x, y, and z are fractions, then the coordinates
of the point are x y z. Thus, point 4 in Fig. 2-7, taken as the origin, has co-
ordinates 0 0 0 while points B, C, and D, when referred to cubic axes, have
coordinates 0 4 4,4 0 4, and 1 1 O, respectively. Point E has coordinates 1 4 1 and
is equivalent to point D, being separated from it by the vector ¢. The coordinates

Fig. 2-7 Face-centered cubic point lattice referred to cubic and rhombohedral cells.
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of equivalent points in different unit cells can always be made identical by the
addition or subtraction of a set of integral coordinates; in this case, subtraction
of 00 | from 4 % 1 (the coordinates of E) gives } 4 0 (the coordinates of D).

Note that the coordinates of a body-centered point, for example, are aiways
1 4 4 no matter whether the unit cell is cubic, tetragonal, or orthorhombic, and
whatever its size. The coordinates of a point position, such as 4 + 4, may also be
regarded as an operator which, when “‘applied” to a point at the origin, will move
or translate it to the position 4 4 4, the final position being obtained by simple
addition of the operator 4 1 4 and the original position 0 0 0. In this sense, the
positions 0 0 0, 3 4 1 are called the “body-centering translations,” since they will
produce the two point positions characteristic of a body-centered cell when applied
to a point at the origin. Similarly, the four point positions characteristic of a face-
centered cell, namely, 000,04 4, £ 0 4, and 4 4 0, are called the face-centering
translations. The base-centering translations depend on which pair of opposite
faces are centered; if centered on the C face, for example, they are 000, 4 4 0.
These centering translations, summarized below, should be memorized:

body-centering = 000, + 4 4
face-centering = 000,044,1404,140
base-centering = 000, 1 1 0.

The inclusion of 0 0 0 may appear trivial, in that it does not move the point at the
origin on which it acts, but its inclusion does remind us that cells so centered
contain 2, 4, and 2 lattice points, respectively.

2-6 LATTICE DIRECTIONS AND PLANES

The direction of any line in a lattice may be described by first drawing a line
through the origin parallel to the given line and then giving the coordinates of any
point on the line through the origin. Let the line pass through the origin of the
unit cell and any point having coordinates u v w, where these numbers are not
necessarily integral. (This line will also pass through the points 2u 2v 2w, 3u 3v 3w,
etc.) Then [uvw], written in square brackets, are the indices of the direction of the
line. They are also the indices of any line parallel to the given line, since the lattice
is infinite and the origin may be taken at any point. Whatever the values of u, v, w,
they are always converted to a set of smallest integers by multiplication or division
throughout: thus, [ 4 1], [112], and [224] all represent the same direction, but
[112] is the preferred form. Negative indices are written with a bar over the num-
ber, e.g., [uvw]. Direction indices are illustrated in Fig. 2-8. Note how one can
mentally shift the origin, to avoid using the adjacent unit cell, in finding a direction
like [120].

Directions related by symmetry are called directions of a form, and a set of
these are represenied by the indices of one of them enclosed in angular brackets,
for example, the four body diagonals of a cube, [111], [1T1], [TT1], and [TI11],
may all be represented by the symbol {111).

The orientation of planes in a lattice may also be represented symbolically,
according to a system popularized by the English crystallographer Miller. In the
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_ 233
[100] =211
f111)
[001]
[100]
c [010] [120]
- 210]
130
N [100]
[120]

Fig. 2-8 Indices of directions.

when the given plane is parallel to a certain crystallographic axis, because such a
plane does not intercept that axis, i.e., its “intercept™ can only be described as
“infinity.” To avoid the introduction of infinity into the description of plane
orientation, we can use the reciprocal of the fractional intercept, this reciprocal
being zero when the plane and axis are parallel. We thus arrive at a workable
symbolism for the orientation of a plane in a lattice, the Miller indices, which are
defined as the reciprocals of the fractional intercepts which the plane makes with the
crystallographic axes. For example, if the Miller indices of a plane are (hkl),
written in parentheses, then the plane makes fractional intercepts of | /h, 1k, 1)1
with the axes, and, if the axial lengths are q, b, ¢, the plane makes actual intercepts
of a/h, b/k, c/l, as shown in Fig. 2-9(a). Paralle] to any plane in any lattice, there
is a whole set of parallel equidistant planes, one of which passes through the
origin; the Miller indices (hkl) usually refer to that Plane in the set which is nearest
the origin, although they may be taken as referring to any other plane in the set
or to the whole set taken together.

- We may determine the Miller indices of the plane shown in Fig. 2-9(b) as
follows:

Axial lengths 4A 8 A 3A
Intercept lengths 1A 4A 3A
Fractional intercepts ] 4 1

Miller indices 4 2 1

As stated earlier, if a plane is parallel to a given axis, its fractiona] intercept on that
axis is taken as infinity and the corresponding Miller index is zero. If a plane cuts
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a o ™ e a
IA 2A 3A 4A

(a) (b)
Fig. 2-9 Plane designation by Miller indices.

a negative axis, the corresponding index is negative and is written with a bar over it.
Planes whose indices are the negatives of one another are parallel and lie on oppo-
site sides of the origin, e.g., (210) and (210). The planes (nh nk nl) are parallel to
the planes (hk!/) and have 1/nth the spacing. The same plane may belong to two
different sets, the Miller indices of one set being multiples of those of the other;
thus the same plane belongs to the (210) set and the (420) set, and, in fact, the
planes of the (210) set form every second plane in the (420) set. In the cubic system,
it is convenient to remember that a direction [hk/] is always perpendicular to a
plane (hkl) of the same indices, but this is not generally true in other systems.
Further familiarity with Miller indices can be gained from a study of Fig. 2-10.

gt 8

AIJW

Fig. 2-10 Miller indices of lattice planes. The distance d is the plane spacing.
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A slightly different system of plane indexing is used in the hexagonal system,
The unit cell of a hexagonal lattice is defined by two equal and coplanar vectors
a, and a,, at 120° to one another, and a third axis c at right angles [Fig. 2-] l(a)],
The complete lattice is built up, as usual, by repeated translations of the points at
the unit cell corners by the vectors a,, a,, ¢. Some of the points so generated are
shown in the figure, at the ends of dashed lines, in order to exhibit the hexagonal
symmetry of the lattice, which has a 6-fold rotation axis parallel to ¢. The third
axis a3, lying in the basal plane of the hexagonal prism, is so symmetrically related
to a, and a, that it is often used in conjunction with the other two. Thus the
indices of a plane in the hexagonal system, called Miller-Bravais indices, refer to
Jour axes and are written (hkil). The index i is the reciprocal of the fractional
intercept on the a, axis. Since the intercepts of a plane on a, and a, determine its
intercept on a,, the value of i depends on the values of # and k. The relation is

h+k=—i 2-2)

Since i is determined by 4 and k, it is sometimes replaced by a dot and the plane
symbol written (hk - /). Sometimes even the dot is omitted. However, this usage
defeats the purpose for which Miller-Bravais indices were devised, namely, to give
similar indices to similar planes. For example, the side planes of the hexagonal
prism in Fig. 2-11(b) are all similar and symmetrically located, and their relation-
ship is clearly shown in their full Miller-Bravais symbols: (1010), (0170), (1100),
(1010), (0110), (1T00). On the other hand, the abbreviated symbols of these planes,
(10-0), (01 - 0), (T1-0), (10-0), (01-0), (1T 0) do not immediately suggest this
relationship. :

Directions in a hexagonal lattice are best expressed in terms of the three basic
vectors a,, a,, and ¢. Figure 2-11(b) shows severa] examples of both plane and
direction indices. Another system, involving four indices, is sometimes used to
designate directions. The required direction is broken up into four component
vectors, parallel to a,, a,, a,, and ¢ and so chosen that the third index is the

{o01)
- _‘kh_" - ::*\. [011]
- N L I~
Eom——— - !
: ~ | I
]
I | i

: | ! i |- E __ (T210)
. j , (1100) A A
! 33* \\.: i
| A= fm = N
I _}- = i e N
- 120 a2 % [010]

aj [100]

(a) (b)

Fig.2-11 (a) The hexagonal unit cell (heavy lines) and (b) indices of planes and directions.
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negative of the sum of the first two. Then, if [UV W] are the indices of a direction
referred to three axes and [uvtw] the four-axis indices, the two are related as
follows:

U=u-1t u= QU - V)/3

V=uv-—1t v=Q2V - U)3

W=w t=—-w+0v)=—U+ V)3
w= W,

Thus, [100] becomes [2110], [210] becomes [1010], etc.

Note that the indices of a plane or direction are meaningless unless the orien-
tation of the unit-cell axes is given. This means that the indices of a particular
lattice plane depend on the unit cell chosen. For example, consider the right-hand
vertical plane of the cell shown by full lines in Fig. 2-4; the indices of this plane
are of the form {100} for the base-centered cell and {110} for the simple cell.

In any crystal system there are sets of equivalent lattice planes related by
symmetry. These are called planes of a form, and the indices of any one plane,
enclosed in braces {hk!}, stand for the whole set. In general, planes of a form have
the same spacing but different Miller indices. For example, the faces of a cube,
(100), (010), (100), (010), (001), and (00T), are planes of the form {100}, since all
of them may be generated from any one by operation of the 4-fold rotation axes
perpendicular to the cube faces. In the tetragonal system, however, only the planes
(100), (010), (100), and (010) belong to the form {100} ; the other two planes, (001)
and (00T), belong to the different form {001}; the first four planes mentioned are
related by a 4-fold axis and the last two by a 2-fold axis.*

Planes of a zone are planes which are all parallel to one line, called the zone
axis, and the zone, i.e., the set of planes, is specified by giving the indices of the
zone axis. Such planes may have quite different indices and spacings, the only
requirement being their parallelism to a line. Figure 2-12 shows some examples.
If the axis of a zone has indices [uvw], then any plane belongs to that zone whose
indices (hk!) satisfy the relation

hu + kv + Iw = 0. 2-3)

(A proof of this relation is given in Sec. 3 of Appendix 1.) Any two nonparallel
planes are planes of a zone since they are both parallel to their line of intersection.
If their indices are (h,k,/,) and (h,k,l,), then the indices of their zone axis [uvw]
are given by the relations

u = kil — kajl,, .

v = lh, — Lh,, (24)

’ w = hlkZ - hzkl.

* C_crtai_n important crystal planes are often referred to by name without any mention of
their Miller indices. Thus, planes of the form {111} in the cubic system are often called
octahedral planes, since these are the bounding planes of an octahedron. In the hexagonal
S)’$tem,_the (0001) plane is called the basal plane, planes of the form {1010} are called
prismatic planes, and planes of the form {1011} are called pyramidal planes.
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Fig. 2-12 All shaded planes in the cubic lattice shown are planes of the zone [001].

(13)
Fig. 2-13 Two-dimensional lattice, showing that lines of lowest indices have the greatest
spacing and the greatest density of lattice points.

The various sets of planes in a lattice have various values of interplanar spacing.
The planes of large spacing have low indices and pass through a high density of
lattice points, whereas the reverse is true of planes of small spacing. Figure 2-13
illustrates this for a two-dimensional lattice, and it is equally true in three di-
mensions. The interplanar spacing dy,;, measured at right angles to the planes, is
a function both of the plane indices (hk/) and the lattice constants (q, b, c, a, B, y).
The exact relation depends on the crystal system involved and for the cubic system
takes on the relatively simple form

a
(Cubic) dy, = . 2-5
w VhE + k2 1 2 @-3)
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In the tetragonal system the spacing equation naturally involves both a and ¢
since these are not generally equal:

(Tetragonal) d,; = - . (2-6)
hil \/hz + k2 + 12 (az/cz)

Interplanar spacing equations for all systems are given in Appendix 3.

2-7 CRYSTAL STRUCTURE

So far we have discussed topics from the field of mathematical (geometrical)
crystallography and have said practically nothing about actual crystals and the
atoms of which they are composed. In fact, all of the above was well known long
before the discovery of x-ray diffraction, i.e., long before there was any certain
knowledge of the interior arrangements of atoms in crystals.

It is now time to describe the structure of some actual crystals and to relate
this structure to the point lattices, crystal systems, and symmetry elements discussed
above. The cardinal principle of crystal structure is that the atoms of a crystal are
set in space either on the points of a Bravais lattice or in some fixed relation to those
points. It follows from this that the atoms of a crystal will be arranged periodically
in three dimensions and that this arrangement of atoms will exhibit many of the
properties of a Bravais lattice, in particular many of its symmetry elements.

The simplest crystals one can imagine are those formed by placing atoms of the
same kind on the points of a Bravais lattice. Not all such crystals exist but,
fortunately for metallurgists, many metals crystallize in this simple fashion, and
Fig. 2-14 shows two common structures based on the body-centered cubic (BCC)
and face-centered cubic (FCC) lattices. The former has two atoms per unit cell
and the latter four, as we can find by rewriting Eq. (2-1) in terms of the number of
atoms, rather than lattice points, per cell and applying it to the unit cells shown.

The next degree of complexity is encountered when two or more atoms of the
same kind are *“associated with” each point of a Bravais lattice, as exemplified by
the hexagonal close-packed (HCP) structure common to many metals. This
structure is simple hexagonal and is illustrated in Fig. 2-15. There are two atoms
per unit cell, as shown in (a), one at 0 0 0 and the other at ¢ 4 4 (or at 1 £ 4, which
Is an equivalent position). Figure 2-15(b) shows the same structure with the origin
of the unit cell shifted so that the point 1 0 0 in the new cell is midway between

BCC FCC

Fiz 2-14 Structures of some common metals. Body-centered cubic: a-Fe, Cr, Mo, V,
etc.; face-centered cubic: v-Fe, Cu, Pb, Ni, etc.
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Fig. 2-15 The hexagonal close-packed structure, shared by Zn, Mg, Be, «-Ti, etc.

the atoms at 1 0 0 and £ { 4 in (a), the nine atoms shown in (a) corresponding to
the nine atoms marked with an X in (b). The “association™ of pairs of atoms with
the points of a simple hexagonal Bravais lattice is suggested by the dashed lines in
(b). Note, however, that the atoms of a close-packed hexagonal structure do not
themselves form a point lattice, the surroundings of an atom at 00 0 being dif-
ferent from those of an atom at % 1 1. Figure 2-15(c) shows still another repre-
sentation of the HCP structure: the three atoms in the interior of the hexagonal
prism are directly above the centers of alternate triangles in the base and, if re-
peated through space by the vectors a, and a,, would also form a hexagonal array
just like the atoms in the layers above and below.

The HCP structure is so called because it is one of the two ways in which
spheres can be packed together in space with the greatest possible density and still
have a periodic arrangement. Such an arrangement of spheres in contact is shown
in Fig. 2-15(d). If these spheres are regarded as atoms, then the resulting picture
of an HCP metal is much closer to physical reality than is the relatively open
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Fig. 2-16 Comparison of FCC and HCP structures. The black atoms in the FCC drawing
delineate half a hexagon, which is completed on the same plane extended into the next
unit cell below (not shown). '

structure suggested by the drawing of Fig. 2-15(c), and this is true, generally, of all
crystals. On the other hand, it may be shown that the ratio of ¢ to a in an HCP
structure formed of spheres in contact is 1.633 whereas the c/a ratio of metals
having this structure varies from about 1.58 (Be) to 1.89 (Cd). As there is no reason
to suppose that the atoms in these crystals are not in contact, it follows that they
must be ellipsoidal in shape rather than spherical. ,

The FCC structure is an equally close-packed arrangement. Its relation to the
HCP structure is not immediately obvious, but Fig. 2-16 shows that the atoms on
the (111) planes of the FCC structure are arranged in a hexagonal pattern just like
the atoms on the (0002) planes of the HCP structure. The only difference between
the two structures is the way in which these hexagonal sheets of atoms are
arranged above one another. In an HCP metal, the atoms in the second layer are
::5:: ;hc hollows in the first layer and the atoms in the third layer are above the
e : ![r; ;h; first layer, so that the layer stacking sequence can be summariz.ed as
\JMc' s bu; t h The first two atom layers of an FCC metal are put down in the

Y, ¢ atoms of the third layer are so placed in the hollows of the second
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Fig. 2-17 The structure of a-uranium, after Jacob and Warren [2.1].

layer that not until the fourth layer does a position repeat. FCC stacking therefore
has the sequence ABCABC.... These stacking schemes are indicated in the
plan views shown in Fig. 2-16.

Another example of the “association” of more than one atom with each point
of a Bravais lattice is given by uranium. The structure of the form stable at room
temperature, a-uranium, is illustrated in Fig. 2-17 by plan and elevation drawings.
In such drawings, the height of an atom (expressed as a fraction of the axial length)
above the plane of the drawing (which includes the origin of the unit cell and two
of the cell axes) is given by the numbers marked on each atom. The Bravais lattice
is base-centered orthorhombic, centered on the C face, and Fig. 2-17 shows how
the atoms occur in pairs through the structure, each pair associated with a lattice
point. There are four atoms per unit cell, located at 0 Y4054 33 + ») 1, and
3 (3 — y) . Here we have an example of a variable parameter y in the atomic
coordinates. Crystals often contain such variable parameters, which may have
any fractional value without destroying any of the symmetry elements of the
structure. A quite different substance might have exactly the same structure as
uranium except for slightly different values of g, b, ¢, and y. For uranium yis
0.105 + 0.005. :

Turning to the crystal structure of compounds of unlike atoms, we find that the
structure is built up on the skeleton of a Bravais lattice but that certain other rules
must be obeyed, precisely because there are unlike atoms preseat. Consider, for
example, a crystal of A,B, which might be an ordinary chemical compound, an
intermediate phase of relatively fixed composition in some alloy system, or an
ordered solid solution. Then the arrangement of atoms in A,B, must satisfy the
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Fig. 2-18 The structures of (a) CsCl (common to CsBr, NiAl, ofdered B-brass, ordered
CuPd, etc.) and (b) NaCl (common to KCl, CaSe, PbTe, etc.). :

following conditions:

1. Body-, face-, or base-centering translations, if present, must begin and end on
atoms of the same kind. For example, if the structure is based on a body-centered
Bravais lattice, then it must be possible to go from an A atom, say, to another A
atom by the translation 4 1 1. '

2. The set of A atoms in the crystal and the set of B atoms must separately
possess the same symmetry elements as the crystal as a whole, since in fact they -
make up the crystal. In particular, the operation of any symmetry element present
must bring a given atom, A for example, into coincidence with another atom of
the same kind, namely A. :

Suppose we consider the structures of a few common crystals in light of the
above requirements. Figure 2-18 illustrates the unit cells of two ionic compounds,
CsCl and NaCl. These structures, both cubic, are common to many other crystals
and, wherever they occur, are referred to as the “CsCl structure” and the “NaCl
structure.” In considering a crystal structure, one of the most important things to
determine is its Bravais lattice, since that is the basic framework on which the
crystal is built and because, as we shall see later, it has a profound effect on the way
in which that crystal diffracts X-rays. '

What is the Bravais lattice of CsCl? Figure 2-18(a) shows that the unit cell
contains two atoms, ions really, since this compound is completely ionized even in
the solid state: a caesium ion at 0 0 0 and a chlorine ion at 4+ 4 4. The Bravais
lattice is obviously not face-centered, but we note that the body-centering trans-
!ation 4 1 4 connects two atoms. However, these are unlike atoms and the lattice
is therefore not body-centered. It is, by elimination, simple cubic. If one wishes,
one may think of both ions, the caesium at 0 0 0 and the chlorine at 4+ 1 1, as being
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associated with the lattice point at 0 0 0. It is not possible, however, to associate
any one caesium ion with any particular chlorine ion and refer to them as a CsCl
molecule; the term “molecule” therefore has no real physical significance in such
a crystal, and the same is true of most inorganic compounds and alloys.

Close inspection of Fig. 2-18(b) will show that the unit cell of NaCl contains
8 ions, located as follows:

4 Na* at.OOO,%«}O,«}O&, and 04 }
4Cl"at344,004,040,and 4 00.

The sodium ions are clearly face-centered, and we note that the face-centering
translations (000,440,104, 04 1), when applied to the chlorine ion at 4 3,
will reproduce all the chlorine-ion positions. The Bravais lattice of NaCl is
therefore face-centered cubic. The ion positions, incidentally, may be written in
summary form as: | :

4Na* at000 + face-centering translations.
4Cl™ at 4 4 4 + face-centering translations.

Note also that in these, as in all other structures, the operation of any sym-
metry element possessed by the lattice must bring similar atoms or ions into
coincidence. For example, in Fig. 2-18(b), 90° rotation about the 4-fold [010]
rotation axis shown brings the chlorine ion at 0 1 4 into coincidence with the
chlorine ion at 4 1 1, the sodium ion at 0 1 1 with the sodium ion at 1 1 1, etc.

Elements and compounds often have closely similar structures. Figure 2-19
shows the unit cells of diamond and the zinc-blende form of ZnS. Both are face-
centered cubic. Diamond has 8 atoms per unit cell, located at

000 + face-centering translations
3 1 1 + face-centering translations.

The atom positions in zinc blende are identical with these, but the first set of
positions is now occupied by one kind of atom (S) and the other by a different
kind (Zn).

Note that diamond and a metal like copper have quite dissimilar structures,
although both are based on a face-centered cubic Bravais lattice. To distinguish
between these two, the terms “diamond cubic” and “face-centered cubic” are
usually used. The industrially important semiconductors, silicon and germanium,
have the diamond cubic structure.

Instead of referring to a structure by name, such as the “NaCl structure,” one
can use the designations introduced years ago in Strukturbericht [G.1]. These
consist of a letter and a number: the letter A indicates an element, B an AB com-
pound, C an AB, compound, etc. The structure of copper, for example, is called
the Al structure, a-Fe is A2, zinc is A3, diamond is A4, NaCl is Bl, etc. A full
list is given by Pearson [G.16, Vol. 1, p. 85].

Some rather complex crystals can be built on a cubic lattice. For example, the
ferrites, which are magnetic and are used as memory cores in digital computers,
have the formula MO - Fe,0,, where M is a divalent metal ion like Mn, Ni, Fe,
Co, etc. Their structure is related to that of the mineral spinel. The Bravais lattice
of the ferrites is face-centered cubic. and the unit cell rantaine 8 “malamio ~m -
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Fig. 2-19 The structures of (a) diamond (common to Sl, Gé, and gray Sn) and (b) the
zinc-blende form of ZnS (common to HgS, Cul, AlISb, BeSe, etc.).

total of 8 X 7 = 56 ions. There are therefore 56/4 or 141 ions associated with each
lattice point. : -

The number of atoms per unit cell in any crystal is partially dependent on its
Bravais lattice. For example, the number of atoms per unit cell in a crystal based
on a body-centered lattice must be a multiple of 2, since there must be, for any
atom in the cell, a corresponding atom of the same kind at a translation of { 4 4
from the first. The number of atoms per cell in a base-centered lattice must also
be a multiple of 2, as a result of the base-centering translations. Similarly, the
number of atoms per cell in a face-centered lattice must be a multiple of 4.

The reverse of these propositions is not true. It would be a mistake to assume,
for example, that if the number of atoms per cell is a multiple of 4, then the lattice
is necessarily face-centered. The unit cell of the intermediate phase AuBe, for
example (Fig. 2-20), contains 8 atoms and yet it is based on a simple cubic Bravais
lattice. The atoms are located as follows:

4 Au at

uuu, 3+ WG -wniG+u)¢ -w,G-wi@+w,
4 Be at
www,G+w)GE-ww, WG +w)G —w, G —w) WG+ w),

where # = 0.100 and w = 0.406, each +0.005. If the parameter u is put equal to
zero, the atomic coordinates of the gold atoms become those of a face-centered
cubic cell. The structure of AuBe may therefore be regarded as distorted face-
centered cubic, in which the presence of the beryllium atoms has forced the gold
atoms out of their original positions by a distance +u, +u, +u. These translations
are all in directions of the form {111), i.e., parallel to body diagonals of the cube,
and are shown as dotted lines in Fig. 2-20.

| It should now be apparent that the term “simple,” when apphed to a Bravais

2ttice, is used in a very special, technical sense and that some very complex
structures can be built up on a “simple” lattlce In fact, they may contain more

than a hindrad atAarmc mar tinit ~all Tha Anlt tarlr-akla Aafinitian Af a cimnla
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Fig. 2—20. The structure of AuBe, shared by FeSi, NiSi, CoSi, MnSi, etc. It is known as
the FeSi structure [2.2].

lattice is a negative one: a given lattice is simple if it is neither body-, base-, nor
face-centered; these latter possibilities can be ruled out by showing that the set of
atomic positions does not contain the body-, base-, or face-centering translations.
There is no rule governing the allowable number of atoms per cell in a simple
lattice: this number may take on any one of the values 1, 2, 3, 4, 5, etc., although
not in every crystal system and not every higher integer is permitted. Incidentally,
not every theoretical possibility known to mathematical crystallography is realized
in nature; for example, no known element crystallizes with a simple hexagonal
lattice containing one atom per unit cell.

There is one other way of arranging unlike atoms on a point lattice besides
those considered so far and that is exemplified by the structure of solid solutions.
These solutions are of two types, substitutional and interstitial; in the former,
solute atoms substitute for, or replace, solvent atoms on the lattice of the solvent,
while in the latter, solute atoms fit into the interstices of the solvent lattice. The
interesting feature of these structures is that the solute atoms are distributed more
or less at random. For example, consider a 10 atomic percent solution of molyb-
denum in chromium, which has a BCC structure. The molybdenum atoms can
occupy either the corner or body-centered positions of the cube in a random,
irregular manner, and a small portion of the crystal might have the appearance of
Fig. 2-21(a). Five adjoining unit cells are shown there, with a total of 29 atoms,
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Fig. 2-21 Structure of solid solutions: (a) Mo in Cr (substitutional); (b) C in a-Fe
(interstitial). '

3 of which are molybdenum. This section of the crystal therefore contains some-
what more than 10 atomic percent molybdenum, but the next five cells would
probably contain somewhat less. Such a structure does not obey the ordinary rules
of crystallography: for example, the right-hand cell of the group shown does not
have cubic symmetry, and one finds throughout the structure that the translation
given by one of the unit cell vectors may begin on an atom of one kind and end
on an atom of another kind. All that can be said of this structure is that it is BCC
on the average, and experimentally we find that it displays the x-ray diffraction
effects proper to a BCC lattice. This is not surprising since the x-ray beam used to
examine the crystal is so large compared to the size of a unit cell that it observes,
so to speak, millions of unit cells at the same time and so obtains only an average
“picture” of the structure. -

The above remarks apply equally well to interstitial solid solutions. These
form whenever the solute atom is small enough to fit into the solvent lattice
without causing too much distortion. Ferrite, the solid solution of carbon in a-
iron, is a good example.* In the unit cell shown in Fig. 2-21(b), there are two kinds
of “holes” in the lattice: one at 3 0 } (marked ») and equivalent positions in the
centers of the cube faces and edges, and one at } 0 4 (marked x) and equivalent
positions. All the evidence at hand points to the fact that the carbon atoms in
ferrite are located in the holes at 4 0 1 and equivalent positions. On the average,
however, no more than about | of these positions in 500 unit cells is occupied,
since the maximum solubility of carbon in ferrite is only about 0.1 atomic percent.

Still another type of structure worth noting is that of ordered solid solutions.
As described above, a typical substitutional solid solution has solute atoms
distributed more or less at random on the lattice points of the solvent.t On the
other hand, there are solutions in which this is true only at elevated temperatures;
when cooled to lower temperatures, the solute atoms take up an orderly, periodic

Note the double meaning of the word ferrite: (1) melaliurgical, for the metallic solid

;Octl:ﬁ)r;dmemioned above, and (2) mineralogical, for the oxide MO - Fe,O3 previously

tOf ¢ . L . NP
course, when the solution becomes concentrated, there is no real distinction between

"SOIVC [T} (1% 1 i - !
h " an d‘ solute.” There is only one lattice, with two or more kinds of atoms
Cistributed on it,



arrangement while still remaining on the lattice points of the solvent. The solid
solution is then said to be ordered and to possess a superlattice. The alloy AuCu,
1s a classic example: at high temperatures the copper and gold atoms are located
more or less at random on face-centered cubic lattice sites, while at low temperature
the gold atoms occupy only the cube corner positions and the copper atoms only
the face-centered positions. In its temperature range of stability then, an ordered
solid solution resembles a chemical compound, with atoms of one kind on one set
of lattice sites and atoms of a different kind on another set. But an ordered solid
solution is a “half-hearted compound” because, when heated, it disorders before
it melts; a real compound, like NaCl, remains ordered right up to the melting
point. Crystallographically, the structures of the disordered and ordered solid
solutions are quite different; disordered AuCu, is, on the average, face-centered
cubic while the ordered form is simple cubic. Such structures will be discussed
more fully in Chap. 13.

2-8 ATOM SIZES AND COORDINATION

When two or more unlike atoms unite to form a chemical compound, inter-
mediate phase, or solid solution, the kind of structure formed is dependent, in
part, on the relative sizes of the atoms involved. But what is meant by the size of
an atom? To regard an atom as something like a billiard ball with a sharply
defined bounding surface is surely an oversimplification, since we know that the
electron density decreases gradually at the “surface” of the atom and that there
is a small but finite probability of finding an electron at quite large distances from
the nucleus. And yet the only practical way we have of defining atomic size lies
in considering a crystal as a collection of rigid spheres in contact. The size of an
atom, then, is given by the distance of closest approach of atom centers in a crystal
of the element, and this distance can be calculated from the lattice parameters.
For example, the lattice parameter a of a-iron is 2.87 A, and in a BCC lattice
the atoms are in contact only along the diagonals of the unit cube. The diameter
of an iron atom is therefore equal to one half the length of the cube diagonal, or

(\/ 5/2)a = 2.48 A, The following formulas give the distance of closest approach in
the three common metal structures:

BCC = \—/—3 a,

2
FCC = —\/—5 a,

2 (2-7)
HCP = a (between atoms in basal plane),

\/f_ c? (between atom in basal plane

4 and neighbors above or below).
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Values of the distance of closest approach, together with the crystal structures and
lattice parameters of the elements, are tabulated in Appendix 3.

To a first approximation, the size of an atom is a constant. In other words, an
iron atom has about the same size whether it occurs in pure iron, an intermediate
phase, or a solid solution. This is a very useful fact to remember when investigating
unknown crystal structures, for it enables us to predict roughly how large a hole is
necessary in a proposed structure to accommodate a given atom. More precisely,
it is known that the size of an atom has a slight dependence on its coordination
number, which is the number of nearest neighbors of the given atom and which
depends on crystal structure. The coordination number of an atom in the FCC or
HCP structures is 12, in BCC 8, and diamond cubic 4. The smaller the coordination
number, the smaller the volume occupied by a given atom, and the approximate
amount of contraction to be expected with decrease in coordination number is
found to be:

Change in coordination Size contraction, percent

12 - 8 3
12> 6 4
12 - 4 ~ 12

This means, for example, that the diameter of an iron atom is greater if the iron
is dissolved in FCC copper than if it exists in a crystal of BCC a-iron or is dissolved
in BCC vanadium. If it were dissolved in copper, its diameter would be approx-
imately 2.48/0.97, or 2.56 A. B

The size of an atom in a crystal also depends on whether its binding is ionic,
covalent, metallic, or van der Waals, and on its state of ionization. The more
electrons are removed from a neutral atom the smaller it becomes, as shown
strikingly for iron, whose atoms and ions Fe, Fe**, Fe*** have diameters of
2.48, 1.66, and 1.34 A, respectively.

The spatial arrangement of atoms about a given point is often described by
words such as octahedral and tetrahedral. For example, in the NaCl structure of
Fig. 2-18(b) the central C1~ ion at 4 4 } is said to be octahedrally surrounded by
Na™* ions, because the six Na* jons in the face-centered positions lie on the
corners of an octahedron, a solid bounded by eight triangular sides. In the zinc
blende structure of Fig. 2-19(b) the empty position marked A is octahedrally
surrounded by sulphur atoms, of which only four are in the cell shown, and would
be referred to as an octahedral hole in the structure. This group of atoms is shown
sc.parately in Fig. 2-22. In the same structure the Zn atom at 3 4, marked B in
Fig. 2-19(b), is surrounded by four S atoms at the corners of a tetrahedron, a solid
boundFd by four triangular sides (Fig. 2-22). In fact, all four of the Zn atoms in
the unit cell have tetrahedral S surroundings. Also in the ZiS structure the reader
can de.monstrate, by sketching three cells adjacent to the one shown, that the hole
at A is tetrahedrally surrounded by Zn atoms. Thus, the hole at 4 has both
octahedral (S) and tetrahedral (Zn) surroundings, an unusual circumstance.
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Fig. 2-22 Portion of the zinc blende structure. Compare Fig. 2-19(b). The hole at 4
has octahedral surroundings. The Zn atom at B has tetrahedral surroundings.

2-9 CRYSTAL SHAPE

We have said nothing so far about the shape of crystals, preferring to concentrate
instead on their interior structure. However, the shape of crystals is, to the layman,
perhaps their most characteristic property, and nearly everyone is familiar with
the beautifully developed flat faces exhibited by natural minerals or crystals
artificially grown from a supersaturated salt solution. In fact, it was with a study
of these faces and the angles between them that the science of crystallography
began.

Nevertheless, the shape of crystals is really a secondary characteristic, since it
depends on, and is a consequence of, the interior arrangement of atoms. Some-
times the external shape of a crystal is rather obviously related to its smallest
building block, the unit cell, as in the little cubical grains of ordinary table salt
(NaCl has a cubic lattice) or the six-sided prisms of natural quartz crystals
(hexagonal lattice). In many other cases, however, the crystal and its unit cell have
quite different shapes; gold, for example, has a cubic lattice, but natural gold
crystals are octahedral in form, i.e., bounded by eight planes of the form {111}.

An important fact about crystal faces was known long before there was any
knowledge of crystal interiors. It is expressed as the law of rational indices, which
states that the indices of naturally developed crystal faces are always composed of
small whole numbers, rarely exceeding 3 or 4. Thus, faces of the form {100},
{111}, {1100}, {210}, etc., are observed but not such faces as {510}, {719}, etc.
We know today that planes of low indices have the largest density of lattice points,
and it is a law of crystal growth that such planes develop at the expense of planes
with high indices and few lattice points.

To a metallurgist, however, crystals with well-developed faces are in the
category of things heard of but rarely seen. They occur occasionally on the free
surface of castings, in some electrodeposits, or under other conditions of no ex-
ternal constraint. To a metallurgist, a crystal is most usually a “grain,” seen
through a microscope in the company of many other grains on a polished section.
If he has an isolated single crystal, it will have been artificially grown either from
the melt, and thus have the shape of the crucible in which it solidified, or by re-
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crystallization, and thus have the shape of the starting material, whether sheet,
rod, or wire.

The shapes of the grains in a polycrystalline mass of metal are the result of
several kinds of forces, all of which are strong enough to counteract the natural
tendency of each grain to grow with well-developed flat faces. The result is a grain
roughly polygonal in shape with no obvious aspect of crystallinity. Nevertheless,
that grain is a crystal and just as ‘“crystalline” as, for example, a well-developed
prism of natural quartz, since the essence of crystallinity is a periodicity of inner
atomic arrangement and not any regularity of outward form.

2-10 TWINNED CRYSTALS

Some crystals have two parts symmetrically related to one another. These, called
twinned crystals, are fairly common both in minerals and in metals and alloys.
For a detailed discussion of twinning, see Kelly and Groves [G.33] and Barrett
and Massalski [ G.25].

The relationship between the two parts of a twinned crystal is described by the
symmetry operation which will bring one part into coincidence with the other or
with an extension of the other. Two main kinds of twinning are distinguished,
depending on whether the symmetry operation is 180° rotation about an axis,
called the twin axis, or reflection across a plane, called the twin plane. The plane
on which the two parts of a twinned crystal are united is called the composition
plane. In the case of a reflection twin, the composition plane may or may not
coincide with the twin plane.

Of most interest to metallurgists, who deal mainly with FCC, BCC, and HCP
structures, are the following kinds of twins:

1. Annealing twins, such as occur in FCC metals and alloys (Cu, Ni, a-brass,
Al, etc.), which have been cold-worked and then annealed to cause recrystallization.

2. Deformation twins, such as occur in deformed HCP metals (Zn, Mg, Be, etc.)
and BCC metals («-Fe, W, etc.).

Annealing Twins

Annealing twins in FCC metals are rotation twins, in which the two parts are
related by a 180° rotation about a twin axis of the form (111). Because of the high
symmetry of the cubic lattice, this orientation relationship is also given by a 60°
rotation about the twin axis or by reflection across the {111} plane normal to the
twin axis. In other words, FCC annealing twins may also be classified as reflection
twins. The twin plane is also the composition plane.

Occasionally, annealing twins appear under the microscope as in Fig. 2-23(a),
with one part of a grain (B) twinned with respect to the other part (4). The two
parts are in contact on the composition plane (111) which makes a straight-line
trace on the plane of polish. More common, however, is the kind shown in Fig.
2-23(b). The grain shown consists of three parts: two parts (4, and 4,) of identical
orientation separated by a third part (B) which is twinned with respect to 4, and
-1;. B is known as a twin band.



