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Diffraction I1: Intensities of
Diffracted Beams

4-1 INTRODUCTION

As stated earlier, the positions of the atoms in the unit cell affect the intensities but
not the directions of the diffracted beams. That this must be so may be seen by
considering the two structures shown in Fig. 4-1. Both are orthorhombic with
two atoms of the same kind per unit cell, but the one on the left is base-centered
and the one on the right body-centered. Either is derivable from the other by a
simple shift of one atom by the vector ic.

Consider reflections from the (001) planes which are shown in profile in Fig.
4-2. For the base-centered lattice shown in (a), suppose that the Bragg law is
satisfied for the particular values of A and 6 employed. This means that the path
difference ABC between rays 1’ and 2’ is one wavelength, so that rays 1’ and 2’
are in phase and diffraction occurs in the direction shown. Similarly, in the body-
centered lattice shown in (b), rays 1’ and 2’ are in phase, since their path difference
ABC is one wavelength. However, in this case, there is another plane of atoms
midway between the (001) planes, and the path difference DEF between rays 1’
and 3’ is exactly half of ABC, or one-half wavelength. Thus rays 1’ and 3’ are
completely out of phase and annul each other. Similarly, ray 4’ from the next
plane down (not shown) annuls ray 2’, and so on throughout the crystal. There is
no 001 reflection from the body-centered lattice.

This example shows how a simple rearrangement of atoms within the unit cell
can eliminate a reflection completely. More generally, the intensity of a diffracted
beam is changed, not necessarily to zero, by any change in atomic positions, and,
conversely, we can determine atomic positions only by observations of diffracted
intensities. To establish an exact relation between atom position and intensity
is the main purpose of this chapter. The problem is complex because of the many
variables involved, and we will have to proceed step by step: we will consider how
x-rays are scattered first by a single electron, then by an atom, and finally by all
the atoms in the unit cell. We will apply these results to the powder method of
x-ray diffraction only, and, to obtain an expression for the intensity of a powder
pattern line, we will have to consider a number of other factors which affect the
way in which a crystalline powder diffracts x-rays.

4-2 SCATTERING BY AN ELECTRON

We have seen in Chap. 1 that an x-ray beam is an electromagnetic wave character-
ized by an electric field whose strength varies sinusoidally with time at any one
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168 Difiraction II: Intensities of diffracted beams

(a) (b)

(a) (b)

Fig. 4-2 Diffraction from the (001) planes of (a) base-centered and (b) body-centered
orthorhombic lattices.

point in the beam. Since an electric field exerts a force on a charged particle such
as an electron, the oscillating electric field of an x-ray beam will set any electron it
encounters into oscillatory motion about its mean position.

Now an accelerating or decelerating electron emits an electromagnetic wave.
We have already seen an example of this phenomenon in the x-ray tube, where
x-rays are emitted because of the rapid deceleration of the electrons striking the
target. Similarly, an electron which has been set into oscillation by an x-ray beam
is continuously accelerating and decelerating during its motion and therefore
emits an electromagnetic wave. In this sense, an electron is said to scatter x-rays,
the scattered beam being simply the beam radiated by the electron under the action
of the incident beam. The scattered beam has the same wavelength and frequency
as the incident beam and is said to be coherent with it, since there is a definite
relationship between the phase of the scattered beam and that of the incident beam
which produced it. (The phase change on scattering from an electron is 4/2.
Because it is exactly the same for all the electrons in a crystal, it cancels out in
any consideration of phase differences between rays scattered by different atoms,
as in Fig. 3-2, and so does not affect the derivation of the Bragg law given in
Sec. 3-2.)

Although x-rays are scattered in all directions by an electron, the intensity of
the scattered beam depends on the angle of scattering, in a way which was first
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Fig. 43 Coherent scattering of x-rays by a single electron.

worked out by J. J. Thomson. He found that the intensity / of the beam scattered
by a single electron of charge e coulombs (C) and mass m kg, at a distance r meters
from the electron, is given by

2 4
Ho e .2 K . 2
I=171 (== sin?a = I, — sin” « 4-1
° (41:) (mzrz) l %2 -1

where I, = intensity of the incident beam, uo = 47 x 1077 m kg C™2, K =
constant, and o« = angle between the scattering direction and the direction of
acceleration of the electron. Suppose the incident beam is traveling in the direction
Ox (Fig. 4-3) and encounters an electron at 0. We wish to know the scattered
intensity at P in the xz plane where OP is inclined at a scattering angle of 20 to
the incident beam. An unpolarized incident beam, such as that issuing from an
x-ray tube, has its electric vector E in a random direction in the yz plane. This
beam may be resolved into two plane-polarized components, having electric
vectors E, and E, where

E? = E2 + EZ.

On the average, E, will be equal to E,, since the direction of E is perfectly random.
Therefore

E2 = E? = }E.

The intensity of these two components of the incident beam is proportional to the
square of their electric vectors, since E measures the amplitude of the wave and the
intensity of a wave is proportional to the square of its amplitude. Therefore

IOy = IOz = %IO°

The y component of the incident beam accelerates the electron in the direction
Oy. It therefore gives rise to a scattered beam whose intensity at P is found from
Eq. (4-1) to be

K

Ipy = Iy —,
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since « = A yOP = m/2. Similarly, the intensity of the scattered z component is
given by

Ip, = Iy, 52 cos? 20,
r

since « = m/2 — 20. The total scattered intensity at P is obtained by summing
the intensities of these two scattered components:

IP = IPy + IPz

= _]g (Toy + I, cos? 26)
r

K(ly Iy
=2 (20 4+ 2 cos? 20
<2 + > CcOS >

r2

K (1 + cos? 20
I, —[—— """}, 4-
0 r2( 2 ) ( 2)

This is the Thomson equation for the scattering of an x-ray beam by a single
electron. The intensity of the scattered beam is only a minute fraction of the
intensity of the incident beam; the value of K is 7.94 x 1073% m?, so that Ip/], is
only 7.94 x 1072% in the forward direction at | cm from the electron. The equation
also shows that the scattered intensity decreases as the inverse square of the dis-
tance from the scattering electron, as one would expect, and that the scattered
beam is stronger in forward or backward directions than in a direction at right
angles to the incident beam.

The Thomson equation gives the absolute intensity (in ergs/sq cm/sec) of the
scattered beam in terms of the absolute intensity of the incident beam. These
absolute intensities are both difficult to measure and difficult to calculate, so it is
fortunate that relative values are sufficient for our purposes in practically all
diffraction problems. In most cases, all factors in Eq. (4-2) except the last are
constant during the experiment and can be omitted. This last factor, (1 +
cos? 20), is called the polarization factor; this is a rather unfortunate term because,
as we have just seen, this factor enters the equation simply because the incident
beam is unpolarized. The polarization factor is common to all intensity calcula-
tions, and we will use it later in our equation for the intensity of a beam diffracted
by a crystalline powder.

There is another and quite different way in which an electron can scatter x-rays,
and that is manifested in the Compton effect. This effect, discovered by A. H.
Compton in 1923, occurs whenever x-rays encounter loosely bound or free electrons
and can be understood only by considering the incident beam not as a wave
motion, but as a stream of x-ray quanta or photons, each of energy hv,. When
such a photon strikes a loosely bound electron, the collision is an elastic one like
that of two billiard balls (Fig. 4-4). The electron is knocked aside and the photon
is deviated through an angle 28. Since some of the energy of the incident photon
is used in providing kinetic energy for the electron, the energy v, of the photon
after impact is less than its energy hv, before impact. The wavelength 1, of the
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Fig. 44 Elastic collision of photon and electron (Compton effect).

scattered radiation is thus slightly greater than the wavelength A, of the incident
beam, the magnitude of the change being given by the equation

AMA) = 2, — A, = 0.0486 sin? 6. 4-3)

The increase in wavelength depends only on the scattering angle, and it varies
from zero in the forward direction (260 = 0) to 0.05 A in the extreme backward
direction (20 = 180°).

Radiation so scattered is called Compton modified radiation, and, besides
having its wavelength increased, it has the important characteristic that its phase
has no fixed relation to the phase of the incident beam. For this reason it is also
known as incoherent radiation. It cannot take part in diffraction because its
phase is only randomly related to that of the incident beam and cannot therefore
produce any interference effects. Compton modified scattering cannot be pre-
vented, however, and it has the undesirable effect of darkening the background of
diffraction patterns.

(It should be noted that the quantum theory can account for both the coherent
and the incoherent scattering, whereas the wave theory is applicable only to the
former. In terms of the quantum theory, coherent scattering occurs when an
incident photon bounces off an electron which is so tightly bound that the electron
receives no momentum from the impact. The scattered photon therefore has the
same energy, and hence wavelength, as it had before.)

4-3 SCATTERING BY AN ATOM

When an x-ray beam encounters an atom, each electron in it scatters part of the
radiation coherently in accordance with the Thomson equation. One might also
expect the nucleus to take part in the coherent scattering, since it also bears a
charge and should be capable of oscillating under the influence of the incident
beam. However, the nucleus has an extremely large mass relative to that of the
electron and cannot be made to oscillate to any appreciable extent; in fact, the
Thomson equation shows that the intensity of coherent scattering is inversely
proportional to the square of the mass of the scattering particle. The net effect is
that coherent scattering by an atom is due only to the electrons contained in
that atom.

The following question then arises: is the wave scattered by an atom simply
the sum of the waves scattered by its component electrons? More precisely, does
an atom of atomic number Z, i.e., an atom containing Z electrons, scatter a wave
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whose amplitude is Z times the amplitude of the wave scattered by a single electron?
The answer is yes, if the scattering is in the forward direction (26 = 0), because
the waves scattered by all the electrons of the atom are then in phase and the
amplitudes of all the scattered waves can be added directly.

This is not true for other directions of scattering. The fact that the electrons
of an atom are situated at different points in space introduces differences in phase
between the waves scattered by different electrons. Consider Fig. 4-5, in which,
for simplicity, the electrons are shown as points arranged around the central
nucleus. The waves scattered in the forward direction by electrons 4 and B are
exactly in phase on a wave front such as XX”, because each wave has traveled the
same distance before and after scattering. The other scattered waves shown in the
figure, however, have a path difference equal to (CB — AD)and are thus somewhat
out of phase along a wave front such as YY’, the path difference being less than
one wavelength. Partial interference occurs between the waves scattered by 4 and
B, with the result that the net amplitude of the wave scattered in this direction is
less than that of the wave scattered by the same electrons in the forward direction.

A quantity f, the atomic scattering factor, is used to describe the “efficiency”
of scattering of a given atom in a given direction. It is defined as a ratio of
amplitudes:

_ amplitude of the wave scattered by an atom
amplitude of the wave scattered by one electron '

From what has been said already, it is clear that f = Z for any atom scattering in
the forward direction. As 0 increases, however, the waves scattered by individual
electrons become more and more out of phase and f decreases. The atomic
scattering factor depends also on the wavelength of the incident beam: at a fixed

Fig. 45 X-ray scattering by an atom.
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value of 6, f will be smaller the shorter the wavelength, since the path differences
will be larger relative to the wavelength, leading to greater interference between
the scattered beams. The actual calculation of f involves sin 8 rather than 6, so
that the net effect is that f decreases as the quantity (sin 6)/4 increases. The
scattering factor f is sometimes called the form factor, because it depends on the
way in which the electrons are distributed around the nucleus.

Calculated values of f for various atoms and various values of (sin 8)/4 are
tabulated in Appendix 12, and a curve showing the typical variation of f, in this
case for copper, is given in Fig. 4-6. Note again that the curve begins at the
atomic number of copper, 29, and decreases to very low values for scattering in
the backward direction (f near 90°) or for very short wavelengths. Since the
intensity of a wave is proportional to the square of its amplitude, a curve of
scattered intensity from an atom can be obtained simply by squaring the ordinates
of a curve such as Fig. 4-6. (The resulting curve closely approximates the observed
scattered intensity per atom of a monatomic gas, as shown in Fig. 3-18.)

Strictly, the scattering factors f tabulated in Appendix 12 apply only when the
scattered radiation has a wavelength much shorter than that of an absorption edge of the
scattering atom. When these two wavelengths are nearly the same, a small correction to
fmust be applied in precise work. An example is given in Sec. 13-4. Ordinarily we neglect
this effect, called anomalous dispersion.

The scattering just discussed, whose amplitude is expressed in terms of the
atomic scattering factor, is coherent, or unmodified, scattering, which is the only
kind capable of being diffracted. On the other hand, incoherent, or Compton
modified, scattering is occurring at the same time. Since the latter is due to col-
lisions of quanta with loosely bound electrons, its intensity relative to that of the
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Fig. 4-6 The atomic scattering factor of copper.
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unmodified radiation increases as the proportion of loosely bound electrons
increases. The intensity of Compton modified radiation thus increases as the
atomic number Z decreases. It is for this reason that it is difficult to obtain good
diffraction photographs of organic materials, which contain light elements such as
carbon, oxygen, and hydrogen, since the strong Compton modified scattering
from these substances darkens the background of the photograph and makes it
difficult to see the diffraction lines formed by the unmodified radiation. It is also
found that the intensity of the modified radiation increases as the quantity (sin 8)/1
increases. The intensities of modified scattering and of unmodified scattering
therefore vary in opposite ways with Z and with (sin 8)/A.

To summarize, when a monochromatic beam of x-rays strikes an atom, two
scattering processes occur. Tightly bound electrons are set into oscillation and
radiate x-rays of the same wavelength as that of the incident beam. More loosely
bound electrons scatter part of the incident beam and slightly increase its wave-
length in the process, the exact amount of increase depending on the scattering
angle. The former is called coherent or unmodified scattering and the latter in-
coherent or modified; both kinds occur simultaneously and in all directions. If
the atom is a part of a large group of atoms arranged in space in a regular periodic
fashion as in a crystal, then another phenomenon occurs. The coherently scattered
radiation from all the atoms undergoes reinforcement in certain directions and
cancellation in other directions, thus producing diffracted beams. Diffraction is,
essentially, reinforced coherent scattering.

We are now in a position to summarize, from the preceding sections and from
Chap. 1, the chief effects associated with the passage of x-rays through matter.
This is done schematically in Fig. 4-7. The incident x-rays are assumed to be of
high enough energy, i.e., of short enough wavelength, to cause the emission of
photoelectrons and characteristic fluorescent radiation. The Compton recoil
electrons shown in the diagram are the loosely bound electrons knocked out of

incident beam

V7777777 77777777 absorbing substance

fluorescent x-rays /

heat

transmitted beam

electrons
scattered x-rays |
Compton recoil photoelectrons
unmodified Compton modified  ©lectrons
(coherent) (incoherent) Auger electrons

Fig. 4-7 Effects produced by the passage of x-rays through matter, after Henry, Lipson,
and Wooster [G.8].
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the atom by x-ray quanta, the interaction giving rise to Compton modified
radiation. Auger electrons are those ejected from an atom by characteristic x-rays
produced within the atom.

4-4 SCATTERING BY A UNIT CELL

To arrive at an expression for the intensity of a diffracted beam, we must now
restrict ourselves to a consideration of the coherent scattering, not from an isolated
atom but from all the atoms making up the crystal. The mere fact that the atoms
are arranged in a periodic fashion in space means that the scattered radiation is
now severely limited to certain definite directions and is now referred to as a set of
diffracted beams. The directions of these beams are fixed by the Bragg law, which
is, in a sense, a negative law. If the Bragg law is not satisfied, no diffracted beam
can occur; however, the Bragg law may be satisfied for a certain set of atomic
planes and yet no diffraction may occur, as in the example given at the beginning
of this chapter, because of a particular arrangement of atoms within the unit cell
[Fig. 4-2(b)]-

Assuming that the Bragg law is satisfied, we wish to find the intensity of the
beam diffracted by a crystal as a function of atom position. Since the crystal is
merely a repetition of the fundamental unit cell, it is enough to consider the way
in which the arrangement of atoms within a single unit cell affects the diffracted
intensity.

Qualitatively, the effect is similar to the scattering from an atom, discussed in
the previous section. There we found that phase differences occur in the waves
scattered by the individual electrons, for any direction of scattering except the
extreme forwerd direction. Similarly, the waves scattered by the individual atoms
of a unit cell are not necessarily in phase except in the forward direction, and we
must now determine how the phase difference depends on the arrangement of the
atoms.

This problem is most simply approached by finding the phase difference
between waves scattered by an atom at the origin and another atom whose position
is variable in the x direction only. For convenience, consider an orthogonal unit
cell, a section of which is shown in Fig. 4-8. Take atom 4 as the origin and let
diffraction occur from the (h00) planes shown as heavy lines in the drawing. This
means that the Bragg law is satisfied for this reflection and that é,.,., the path
difference between ray 2’ and ray 1’, is given by

62'1' = MCN = 2dh00 Sin 6 = l.

From the definition of Miller indices,
a
dhoo = AC = }—1.

How is this reflection affected by x-rays scattered in the same direction by
atom B, located at a distance x from 4? Note that only this direction need be
considered since only in this direction is the Bragg law satisfied for the 400 re-
flection. Clearly, the path difference between ray 3’ and ray 1’, d;.., will be less
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Fig. 4-8 The effect of atom position on the phase difference between diffracted rays.

than 1; by simple proportion it is found to be

AB x
03,4 = RBS = — () = — (4).
31 y C( ) - /h( )

Phase differences may be expressed in angular measure as well as in wave-
length: two rays, differing in path length by one whole wavelength, are said to
differ in phase by 360°, or 2= radians. If the path difference is 4, then the phase
difference ¢ in radians is given by

¢=§an

The use of angular measure is convenient because it makes the expression of phase
differences independent of wavelength, whereas the use of a path difference to
describe a phase difference is meaningless unless the wavelength is specified.

The phase difference, then, between the wave scattered by atom B and that
scattered by atom A at the origin is given by

031+ 2nh
¢3,1, = 31 (21[) = Lx.
A a

If the position of atom B is specified by its fractional coordinate u = x/a, then the
phase difference becomes

¢3.- = 2mhu.
This reasoning may be extended to three dimensions, as in Fig. 4-9, in which
atom B has actual coordinates x y z or fractional coordinates z;—;g equal to
u v w, respectively. We then arrive at the following important relation for the
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\

Fig. 49 The three-dimensional analogue of Fig. 4-8.

phase difference between the wave scattered by atom B and that scattered by
atom A at the origin, for the hkl reflection:

¢ = 2n(hu + kv + Iw). 4-4)

This relation is general and applicable to a unit cell of any shape.

These two waves may differ, not only in phase, but also in amplitude if atom
B and the atom at the origin are of different kinds. In that case, the amplitudes of
these waves are given, relative to the amplitude of the wave scattered by a single
electron, by the appropriate values of f, the atomic scattering factor.

We now see that the problem of scattering from a unit cell resolves itself into
one of adding waves of different phase and amplitude in order to find the resultant
wave. Waves scattered by all the atoms of the unit cell, including the one at the
origin, must be added. The most convenient way of carrying out this summation
is by expressing each wave as a complex exponential function.

The two waves shown as full lines in Fig. 4-10 represent the variations in
electric field intensity E with time ¢ of two rays on any given wave front in a
diffracted x-ray beam. Their equations may be written

E, = A, sin 2avt — ¢,), (4-5)
E, = A, sin 2Qavt — ¢,). (4-6)

These waves are of the same frequency v and therefore of the same wavelength 4,
but differ in amplitude A4 and in phase ¢. The dotted curve shows their sum E;,
which is also a sine wave, but of different amplitude and phase.

Waves differing in amplitude and phasc may also be added by representing
them as vectors. In Fig. 4-11, each component wave is represented by a vector
whose length is equal to the amplitude of the wave and which is inclined to the
x-axis at an angle equal to the phase angle. The amplitude and phase of the
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2wt

Fig. 4-11 Vector addition of waves.

resultant wave are then found simply by adding the vectors by the parallelogram
law.

This geometrical construction may be avoided by use of the following analytical
treatment, in which complex numbers are used to represent the vectors. A complex
number is the sum of a real and an imaginary number, such as (@ + bi), where a

and b are real and i = v/ —1is imaginary. Such numbers may be plotted in the
“complex plane,” in which real numbers are plotted as abscissae and imaginary
numbers as ordinates. Any point in this plane, or the vector drawn from the
origin to this point, then represents a particular complex number (@ + bi).

To find an analytical expression for a vector representing a wave, we draw the
wave vector in the complex plane as in Fig. 4-12. Here again the amplitude and
phase of the wave are given by 4, the length of the vector, and ¢, the angle between
the vector and the axis of real numbers. The analytical expression for the wave is
now the complex number (4 cos ¢ + iA sin ¢), since these two terms are the
horizontal and vertical components OM and ON of the vector. Note that multi-
plication of a vector by i rotates it counterclockwise by 90°; thus multiplication by
i converts the horizontal vector 2 into the vertical vector 2i. Multiplication twice
by i, that is, by i?> = —1, rotates a vector through 180° or reverses its sense; thus
multiplication twice by i converts the horizontal vector 2 into the horizontal
vector —2 pointing in the opposite direction.

If we write down the power-series expansions of e, cos x, and sin x and
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Fig. 4-12 A wave vector in the complex plane.

compare them, we find that
e = cos x + isinx 4-7)
or _
Ae'® = A cos ¢ + Aisin ¢. (4-8)

Thus the wave vector may be expressed analytically by either side of Eq. (4-8).
The expression on the left is called a complex exponential function.

Since the intensity of a wave is proportional to the square of its amplitude, we
now need an expression for A2, the square of the absolute value of the wave
vector. When a wave is expressed in complex form, this quantity is obtained by
multiplying the complex expression for the wave by its complex conjugate, which
is obtained simply by replacing i by —i. Thus, the complex conjugate of Ae’ is
Ae”®. We have

[4e™®|? = Ae'®de™ ¢ = A2, 4-9)
which is the quantity desired. Or, using the other form given by Eq. (4-8), we have
A(cos ¢ + isin ¢p)A(cos ¢ — isin ¢p) = A*(cos® ¢ + sin® ¢) = A>.

We return now to the problem of adding the scattered waves from each of the
atoms in the unit cell. The amplitude of each wave is given by the appropriate
value of f for the scattering atom considered and the value of (sin 6)/4 involved in
the refiection. The phase of each wave is given by Eq. (4-4) in terms of the hkl
reflection considered and the uvw coordinates of the atom. Using our previous
relations, we can then express any scattered wave in the complex exponential form

Aeid) = erm'(hu+kv+lw). (4_10)

The resultant wave scattered by all the atoms of the unit cell is called the structure
factor, because it describes how the atom arrangement, given by uvw for each
atom, affects the scattered beam. The structure factor, designated by the symbol
F, is obtained by simply adding together all the waves scattered by the individual
atoms. If a unit cell contains atoms 1, 2, 3, ..., N, with fractional coordinates
U, Uy Wy, Uy Dy Wy, U3 U3 W, ... and atomic scattering factors fy, f3, f3, . . ., then
the structure factor for the hkl reflection is given by

F ____fle2nl(hu|+kvx+lw1) +f2e2m(hu2+kvz+lwz) +f3e2m(hu3+kvg+lw3) 4o
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This equation may be written more compactly as

N
Fhkl = aneZni(hu,ﬁkv,.Hw,.) , (4_11)

where the summation extends over all the N atoms of the unit cell.

F is, in general, a complex number, and it expresses both the amplitude and
phase of the resultant wave. Its absolute value |F| gives the amplitude of the
resultant wave in terms of the amplitude of the wave scattered by a single electron.
Like the atomic scattering factor f, |F| is defined as a ratio of amplitudes:

amplitude of the wave scattered by all the atoms of a unit cell

|F| = -
amplitude of the wave scattered by one electron

The intensity of the beam diffracted by all the atoms of the unit cell in a direction
predicted by the Bragg law is proportional simply to |F |2, the square of the
amplitude of the resultant beam, and |F|? is obtained by multiplying the expression
given for F in Eq. (4-11) by its complex conjugate. Equation (4-11) is therefore a
very important relation in x-ray crystallography, since it permits a calculation of
the intensity of any hkl/ reflection from a knowledge of the atomic positions.

We have found the resultant scattered wave by adding together waves, dif-
fering in phase, scattered by individual atoms in the unit cell. Note that the phase
difference between rays scattered by any two atoms, such as 4 and B in Fig. 4-8,
is constant for every unit cell. There is no question here of these rays becoming
increasingly out of phase as we go deeper in the crystal as there was when we
considered diffraction at angles not exactly equal to the Bragg angle 8. In the
direction predicted by the Bragg law, the rays scattered by all the atoms A in the
crystal are exactly in phase and so are the rays scattered by all the atoms B, but
between these two sets of rays there is a definite phase difference which depends
on the relative positions of atoms 4 and B in the unit cell and which is given by
Eq. (4-4).

Although it is more unwieldy, the following trigonometric equation may be used
instead of Eq. (4-11):

N
F=Y filcos 2n(huy + kv, + wy) + isin 2nlhu, + kv, + Iwy)].
1

One such term must be written down for each atom in the unit cell. In general, the sum-
mation will be a complex number of the form

F = a + ib,
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where

N
a= Z‘f;' COos 27[(}1”" + kvn + Iwn),
1

b

N
D" Sy sin 2n(huy + ko, + Iw),
1

|FI? = (a + ib)(a ~ ib) = a? + b2
Substitution for a and b gives the final form of the equation:

|[F|? = [f; cos 2n(hu, + kv, + Iwy) + f; cos 2n(huy, + kv, + wy)) +--- ]2
+ [fi sin 2n(hu, + kv, + wy) + £, sin 2n(huy + kv, + Iwy) + --- 2.

Equation (4-11) is much easier to manipulate, compared to this trigonometric form,
particularly if the structure is at all complicated, since the exponential form is more
compact.

4-5 SOME USEFUL RELATIONS

In calculating structure factors by complex exponential functions, many particular
relations occur often enough to be worthwhile stating here. They may be verified
by means of Eq. (4-7).

a) em’ = e3ni — eSni = —1]

b) eZni = e41u' — e6m' = +1

c) in general, e = (—1)", where n is any integer,
d) €™ = ™™ where n is any integer,
e) e + e” ™ = 2 cos x.

4-6 STRUCTURE-FACTOR CALCULATIONS
Facility in the use of Eq. (4-11) can be gained only by working out some actual
examples, and we shall consider a few such problems here and again in Chap. 10.

a) The simplest case is that of a unit cell containing only one atom at the origin,
i.e., having fractional coordinates 0 0 0. Its structure factor is

F =fe2m'(0) =f
and
F? = 2,
F? is thus independent of A, k, and / and is the same for all reflections.

b) Consider now the base-centered cell discussed at the beginning of this chapter
and shown in Fig. 4-1(a). It has two atoms of the same kind per unit cell located
at000and 140.

F = fe_?m'{O) + erm'(h/2+k/2)

=f[1 + em’(h+k)]'

This expression may be evaluated without multiplication by the complex conjugate,
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since (h + k) is always integral, and the expression for F is thus real and not
complex. If 4 and k are both even or both odd, i.e., “unmixed,” then their sum is
always even and e™**% has the value 1. Therefore

F =2f  for h and k unmixed;
F? = 4f2,
On the other hand, if # and k are one even and one odd, i.e., “mixed,” then their
sum is odd and €***® has the value —1. Therefore
F=0 for h and k mixed;
F* =0.

Note that, in either case, the value of the / index has no effect on the structure
factor. For example, the reflections 111, 112, 113, and 021, 022, 023 all have the
same value of F, namely 2f. Similarly, the reflections 011, 012, 013, and 101, 102,
103 all have a zero structure factor.

c¢) The structure factor of the body-centered cell shown in Fig. 4-1(b) may also
be calculated. This cell has two atoms of the same kind located at 0 0 0 and

113

F = fe?™(0) | fe?nithi2+ki2+1/2)
= f[1 + e+,
F=2f when(h + k + l)iseven;

F? =472
F=0 when (h + k + 1) is odd;
F? =0.

We had previously concluded from geometrical considerations that the base-
centered cell would produce a 001 reflection but that the body-centered cell would
not. This result is in agreement with the structure-factor equations for these two
cells. A detailed examination of the geometry of all possible reflections, however,
would be a very laborious process compared to the straightforward calculation of
the structure factor, a calculation that yields a set of rules governing the value of F?
for all possible values of plane indices.

d) A face-centered cubic cell, such as that shown in Fig. 2-14, may now be
considered. Assume it to contain four atoms of the same kind, located at 0 0 O,

$130,304,and 04 1.
F = femi(® +f'e2m'(h/2+k/2) 4 feRmih/2412) 4 fo2mitk/2+1/2)
= f[1 + grith+h) | omith+l) em‘(k+l)].

If h, k, and [ are unmixed, then all three sums (h + k), (h + /), and (k + [) are
even integers, and each term in the above equation has the value 1.

F = 4f  for unmixed indices;
F? = 16f2.
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If h, k, and ! are mixed, then the sum of the three exponentials is — 1, whether two
of the indices are odd and one even, or two even and one odd. Suppose, for exam-
ple, that h and /are even and k is odd, e.g.,012. Then F=f(1 -1 +1 —-1) =0,
and no reflection occurs.

F=20 for mixed indices;
F?=0

Thus, reflections will occur for such planes as (111), (200), and (220) but not for
the planes (100), (210), (112), etc.

The reader may have noticed in the previous examples that some of the
information given was not used in the calculations. In (a), for example, the cell
was said to contain only one atom, but the shape of the cell was not specified; in
(b) and (c), the cells were described as orthorhombic and in (d) as cubic, but this
information did not enter into the structure-factor calculations. This illustrates
the important point that the structure factor is independent of the shape and size
of the unit cell. For example, any body-centered cell will have missing reflections
for those planes which have (4 + k + /) equal to an odd number, whether the cell
is cubic, tetragonal, or orthorhombic. The rules we have derived in the above
examples are therefore of wider applicability than would at first appear and
demonstrate the close connection between the Bravais lattice of a substance and its
diffraction pattern. They are summarized in Table 4-1. These rules are subject to

Table 4-1
Bravais lattice ‘ Reflections possibly present Reflections necessarily absent
— " - -
|
Simplca all noane
Base-centered h and k unmixed*® h and k& mixed®
Body-centered (h + k + 1) even (h+ k + 1) odd
Face-centerad h, k, and [ unmixed h, k. and | mixed

* These relations apply to a cell centered on the C face. If reflections are present
only when / and ! are unmixed, or when k& and / are unmixed, then the cell is centered
on the B or A face, respectively.

some qualification, since some cells may contain more atoms than the ones given
in examples (a) through (d), and these atoms may be in such positions that re-
flections normally present are now missing. For example, diamond has a face-
centered cubic lattice, but it contains eight carbon atoms per unit cell. All the
reflections present have unmixed indices, but reflections such as 200, 222, 420, etc.,
are missing. The fact that the only reflections present have unmixed indices proves
that the lattice is face-centered, while the extra missing reflections are a clue to the
actual atom arrangement in this crystal.

e) This point may be further illustrated by the structure of NaCl (Fig. 2-18).

This crystal has a cubic lattice with 4 Na and 4 Cl atoms per unit cell, located as
follows:

Na 000 440 303 043
Cl 113 004 040 100




B

124 Diffraction II: Intensities of diffracted beams

In this case, the proper atomic scattering factors for each atom* must be inserted
in the structure-factor equation, which will have eight terms:

F =fNae21u'(O) +fNae2ni(h/2+k/2) +fNae2m'(h/2+l/2) + fNanni(k/2+l/2)
+fC]e21ri(h/2+k/2+l/2) + fCleZm'(l/Z) +fCle2m'(k/2) +fCle21u'(h/2),
F =fN [1+ em'(h+k) + em'(h+l) + em'(k+l)]
a
+ fCl[em'(h+k+l) + em'l + em’k + em'h]
As discussed in Sec. 2-7, the sodium-atom positions are related by the face-
p y
centering translations and so are the chlorine-atom positions. Whenever a lattice
contains common translations, the corresponding terms in the structure-factor
equation can always be factored out, leading to considerable simplification. In
this case we proceed as follows:
F = fN [1 + em'(h+k) + em'(h+l) + em’(k+l)]
a
+ fClem'(h+k+I)[1 + em'(—h—k) + em’(—h—l) + eni(—k—l)].

The signs of the exponents in the second bracket may be changed, by relation (d)
of Sec. 4-5. Therefore

F = [1 + em’(h+k) + em'(h+l) + em'(lt:+l)][f‘Ml +fCle1u'(h+k+l)].

Here the terms corresponding to the face-centering translations appear in the first
factor; the second factor contains the terms that describe the “basis’’ of the unit
cell, namely, the Na atom at 0 0 0 and the Cl atom at 4 4 4. The terms in the first
bracket, describing the face-centering translations, have already appeared in
example (d), and they were found to have a total value of zero for mixed indices
and 4 for unmixed indices. This shows at once that NaCl has a face-centered
lattice and that
F=0 for mixed indices;
F*=0
For unmixed indices,

F = 4[fm + fueni(h+k+l)].
F=4(fxa +fa) if(h+ k + 1)is even;
F? = 16(fy, + fo).

F=4fu—fo) if(h+k+ I)is odd;

F?= 16(fNa —fCl)z-

In this case, there are more than four atoms per unit cell, but the lattice is still
face-centered. The introduction of additional atoms has not eliminated any
reflections present in the case of the four-atom cell, but it has decreased some in
intensity. For example, the 111 reflection now involves the difference, rather than
the sum, of the scattering powers of the two atoms.

* Stricily, and if the calculation of ¥ is to be made to the highest accuracy, scattering
factors f for the ions Na*t and Cl~ must be used, rather than the f values for the neutral
atoms Na and Cl, because NaCl is ionized.
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The student should carefully note that a lot of algebra can be eliminated,
whenever a lattice is known to be centered in any way, by factoring common
translations out of the structure-factor equation and inserting immediately the
known values of the terms representing these translations. This shortcut procedure
is illustrated for NaCl:

1. Write down the atom positions in abbreviated form:
4 Na at 0 0 0 + face-centering translations,

4 Clat 13 + face-centering translations.

2. Write down the equation for F as a product of two factors. The first is the value
of the terms representing the common translations; the second has terms corres-
ponding to the “basis” atoms of the cell. The equation is

F =[] U + foeerteo]

3. Simplify further, as necessary. In all structure-factor calculations the aim is
to obtain a set of general equations that will give the value of F for any value of
hkl.

This shortcut procedure is illustrated again, for the ZnS structure, in Sec.
4-13.
f) One other example of structure factor calculation will be given here. The close-
packed hexagonal cell shown in Fig. 2-15 has two atoms of the same kind located
at000and 1% 3.

unmixed indices
mixed indices.

F = erni(O) +fe21u'(h/3+2k/3+1/2)
=f[1 + e2m'[(h+2k)/3+l/2]].
For convenience, put [(h + 2k)/3 + I/2] = g.
F = f(1 + &**%),
Since g may have fractional values, such as 1, %, £, etc., this expression is still

complex. Multiplication by the complex conjugate, however, will give the square
of the absolute value of the resultant wave amplitude F.

|F|2 =f2(1 + e21:ig)(1 + e—-2uig)
___f2(2 + eZm‘g + e—21u'g).
By relation (e) of Sec. 4-5, this becomes
|F|?2 = f2(2 + 2 cos 2ng)
= f?[2 + 2(2 cos® ng — 1)]
= f2(4 cos? ng)

h + 2k [
=4f2cos’ | —= + =
if ( 3 +2)

=0 when (4 + 2k) is a multiple of 3 and / is odd.
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It is by these missing reflections, suchas 11-1,11-3,22-1,22- 3, thata hexagonal
structure is recognized as being close-packed. Not all the reflections present have
the same structure factor. For example, if (4 + 2k) is a multiple of 3 and / is even,

then
h + 2k +£
3 2

cosnn = +1,

n, where n is an integer;

cos?n = 1,
|F|* = 4f>.

When all possible values of A, k, and [ are considered, the results may be sum-
marized as follows, where m is an integer:

h o+ 2k ! |F|2
3m odd 0
3m even 4f?
Im + 1 odd 3f?
3m + 1 even f?

47 APPLICATION TO POWDER METHOD

Any calculation of the intensity of a diffracted beam must always begin with the
structure factor. The remainder of the calculation, however, varies with the
particular diffraction method involved. For the Laue method, intensity calcula-
tions are so difficult that they are rarely made, since each diffracted beam has a
different wavelength and blackens the film by a variable amount, depending on
both the intensity and the film sensitivity for that particular wavelength. The
factors governing diffracted intensity in the rotating-crystal and powder methods
are somewhat similar, in that monochromatic radiation is used in each, but they
differ in detail. The remainder of this chapter will be devoted to the powder
method, since it is of most general utility in metallurgical work.

There are six factors affecting the relative intensity of the diffraction lines on
a powder pattern:

polarization factor,
structure factor,
multiplicity factor,
Lorentz factor,

n s W

absorption factor,
6. temperature factor.

The first two of these have already been described, and the others will be discussed
in the following sections.



el —

B LR UR PN

ROY e

4-9 Lorentz factor 127

4-8 MULTIPLICITY FACTOR

Consider the 100 reflection from a cubic lattice. In the powder specimen, some
of the crystals will be so oriented that reflection can occur from their (100) planes.
Other crystals of different orientation may be in such a position that reflection can
occur from their (010) or (001) planes. Since all these planes have the same spacing,
the beams diffracted by them all form part of the same cone. Now consider the 111
reflection. There are four sets of planes of the form {111} which have the same
spacing but different orientation, namely, (111), (117), (111), and (1T1), whereas
there are only three sets of the form {100}. Therefore, the probability that {111}
planes will be correctly oriented for reflection is 4 the probability that {100} planes
will be correctly oriented. It follows that the intensity of the 111 reflection will be
% that of the 100 reflection, other things being equal.

This relative proportion of planes contributing to the same reflection enters the
intensity equation as the quantity p, the multiplicity factor, which may be defined
as the number of different planes in a form having the same spacing. Parallel
planes with different Miller indices, such as (100) and (100), are counted separately
as different planes, yielding numbers which are double those given in the preceding
paragraph. Thus the multiplicity factor for the {100} planes of a cubic crystal is
6 and for the {111} planes 8.

The value of p depends on the crystal system: in a tetragonal crystal, the (100)
and (001) planes do not have the same spacing, so that the value of » for {100}
planes is reduced to 4 and the value for {001} planes to 2. Values of the multi-
plicity factor as a function of hk/ and crystal system are given in Appendix 13.

4-9 LORENTZ FACTOR

We must now consider certain trigonometrical factors which influence the intensity
of the reflected beam. Suppose there is incident on a crystal [Fig. 4-13(a)] a
narrow beam of parallel monochromatic rays, and let the crystal be rotated at a
uniforini angular velocity about an axis through O and normal to the drawing, so
that a particular set of reflecting planes, assumed for convenience to be parallel
to the crystal surface, passes through the angle 6, at which the Bragg law is
exactly satisfied. As mentioned in Sec. 3-7, the intensity of reflection is greatest at
the exact Bragg angle but still appreciable at angles deviating slightly from the
Bragg angle, so that a curve of intensity vs. 20 is of the form shown in Fig. 4-13(b).
If all the diffracted beams sent out by the crystal as it rotates through the Bragg
angle are received on a photographic film or in a counter, the total energy of the
diffracted beam can be measured. This energy is called the integrated intensity of
the reflection and is given by the area under the curve of Fig. 4-13(b). The in-
tegrated intensity is of much more interest than the maximum intensity, since the
former is characteristic of the specimen while the latter is influenced by slight
adjustments of the experimental apparatus. Moreover, in the visual comparison
of the intensities of diffraction lines, it is the integrated intensity of the line rather
than the maximum intensity which the eye evaluates.

The integrated intensity of a reflection depends on the particular value of 0p
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(a) (b)

Fig. 4-13 Diffraction by a crystal rotated through the Bragg angle.

(a) (b)

Fig. 4-14 Scattering in a fixed direction during crystal rotation.

involved, even though all other variables are held constant. We can find this
dependence by considering, separately, two aspects of the diffraction curve: the
maximum intensity and the breadth. When the reflecting planes make an angle 6
with the incident beam, the Bragg law is exactly satisfied and the intensity diffracted
in the direction 20, is a maximum. But some energy is still diffracted in this direc-
tion when the angle of incidence differs slightly from 65, and the total energy
diffracted in the direction 20, as the crystal is rotated through the Bragg angle is
given by the value of I, of the curve of Fig. 4-13(b). The value of I, therefore
depends on the angular range of crystal rotation over which the energy diffracted
in the direction 26, is appreciable. In Fig. 4-14(a), the dashed lines show the
position of the crystal after rotation through a small -angle Af from the Bragg
position. The incident beam and the diffracted beam under consideration now
make unequal angles with the reflecting planes, the former making an angle
6, = 05 + A0 and the latter an angle 6, = 605 — AO. The situation on an atomic
scale is shown in Fig. 4-14(b). Here we need only consider a single plane of atoims,
since the rays scattered by all other planes are in phase with the corresponding rays
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scattered by the first plane. Let a equal the atom spacing in the plane and Na the
total length* of the plane. The difference in path length for rays 1’ and 2’ scattered
by adjacent atoms is given by

61l21 = AD - CB
= g cos 0, — a cos 0,
= afcos (65 — AB) — cos (85 + AD)].

By expanding the cosine terms and setting sin A6 equal to A6, since the latter is
small, we find:
51r2' = 20 Ae Sin BB,

and the path difference between the rays scattered by atoms at either end of the
plane is simply N times this quantity. When the rays scattered by the two end
atoms are one wavelength out of phase, the diffracted intensity will be zero. (The
argument here is exactly analogous to that used in Sec. 3-7.) The condition for
zero diffracted intensity is therefore

2Na A8 sin 05 = A,
or

- *
2Na sin 0

This equation gives the maximum angular range of crystal rotation over which
appreciable energy will be diffracted in the direction 20. Since I, depends on
this range, we can conclude that I, is proportional to 1/sin 85. Other things
being equal, I, is therefore large at low scattering angles and small in the back-
reflection region.

The breadth of the diffraction curve varies in the opposite way, being larger at
large values of 205, as was shown in Sec. 3-7, where the half-maximum breadth B
was found to be proportional to 1/cos 8g. The integrated intensity of the reflection
is given by the area under the diffraction curve and is therefore proportional to the
product I,,, B, which is in turn proportional to (1/sin 8g)(1/cos 85) or to 1/sin 265.
Thus, as a crystal is rotated through the Bragg angle, the integrated intensity of a
reflection, which is the quantity of most experimental interest, turns out to be
greater for large and small values of 26 than for intermediate values, other things
being equal.

The preceding remarks apply just as well to the powder method as they do to
the case of a rotating crystal, since the range of orientations available among the
powder particles, some satisfying the Bragg law exactly, some not so exactly, are
the equivalent of single-crystal rotation.

However, in the powder method, a second geometrical factor arises when we
consider that the integrated intensity of a reflection at any particular Bragg angle
depends on the number of crystals oriented at or near that angle. This number is

AQ

*If the crystal is larger than the incident beam, then Na is the irradiated length of the
plane; if it is smaller, Na is the actual length of the plane.
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Fig. 4-15 The distribution of plane normals for a particular cone of reflected rays.

not constant even though the crystals are oriented completely at random. In Fig.
4-15 a reference sphere of radius r is drawn around the powder specimen located
Sl at 0. For the particular hk/ reflection shown, ON is the normal to this set of planes
i ‘}‘ in one crystal of the powder. Suppose that the range of angles near the Bragg
) angle over which reflection is appreciable is Af. Then, for this particular reflection,
b only those crystals will be in a reflecting position which have the ends of their
plane normals lying in a band of width r A8 on the surface of the sphere. Since
the crystals are assumed to be oriented at random, the ends of their plane normals
; l will be uniformly distributed over the surface of the sphere; the fraction favorably
. ’, oriented for a reflection will be given by the ratio of the area of the strip to that of
!

| the whole sphere. If AN is the number of such crystals and N the total number, then
J - AN _r AD - 2mr sin (90° — 65) _ A0 cos Oy
';i o N drr? ;>

i The number of crystals favorably oriented for reflection is thus proportional to
I cos 0, and is quite small for reflections in the backward direction.

In assessing relative intensities, we do not compare the total diffracted energy
in one cone of rays with that in another but rather the integrated intensity per unit
L length of one diffraction line with that of another. For example, in the most
g common arrangement of specimen and film, the Debye-Scherrer method, shown

in Fig. 4-16, the film obviously receives a greater proportion of a diffraction cone
when the reflection is in the forward or backward direction than it does near
20 = 90°. Inclusion of this effect thus leads to a third geometrical factor affecting
the intensity of a reflection. The length of any diffraction line being 27 R sin 20,
where R is the radius of the camera, the relative intensity per unit length of line is
proportional to 1/sin 20,.

In intensity calculations, the three factors just discussed are combined into
one and called the Lorentz factor. Dropping the subscript on the Bragg angle,

we have:

Lorentz factor = | — ! (cos 0) | — ! = ?OS 0 = ! .
sin 20 sin 20 sin220 4 sin®> 0 cos @
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Fig. 4-16 Intersection of cones of diffracted rays with Debye-Scherrer film.
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Fig. 4-17 Lorentz-polarization factor.

This in turn is combined with the polarization factor (1 + cos? 20) of Sec. 4-2
to give the combined Lorentz-polarization factor which, with a constant factor
of § omitted, is given by

2
Lorentz-polarization factor = L—{;__cis_ZB .
sin® 0 cos 0
Values of this factor are given in Appendix 14 and plotted in Fig. 4-17 as a function
of 8. The overall effect of these geometrical factors is to decrease the intensity of
reflections at intermediate angles compared to those in forward or backward
directions.

e i eme e
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4-10 ABSORPTION FACTOR

Still another factor affecting the intensities of the diffracted rays must be con-
sidered, and that is the absorption which takes place in the specimen itself. We
allow for this effect in intensity calculations by introducing the absorption factor A,
which is a number by which the calculated intensity is to be multiplied to allow
for absorption. The calculation of 4 depends on the geometry of the diffraction
method involved, and we will consider below the two most-used methods.

Debye-Scherrer Camera

The specimen in the Debye-Scherrer method has the form of a very thin cylinder
of powder placed on the camera axis, and Fig. 4-18(a) shows the cross section of
such a specimen. For the low-angle reflection shown, absorption of a particular
ray in the incident beam occurs along a path such as 4AB; at B a small fraction of
the incident energy is diffracted by a powder particle, and absorption of this
diffracted beam occurs along the path BC. Similarly, for a high-angle reflection,
absorption of both the incident and diffracted beams occurs along a path such as
(DE + EF). The net result is that the diffracted beam is of lower intensity than
one would expect for a specimen of no absorption.

A calculation of this effect shows that the relative absorption increases as 6
decreases, for any given cylindrical specimen. That this must be so can be seen from
Fig. 4-18(b) which applies to a specimen (for example, tungsten) of very high
absorption. The incident beam is very rapidly absorbed, and most of the diffracted
beams originate in the thin surface layer on the left side of the specimen; backward-
reflected beams then undergo very little absorption, but forward-reflected beams
have to pass through the whole specimen and are greatly absorbed. Actually, the
forward-reflected beams in this case come almost entirely from the top and bottom

(a) (b)

Fig. 4-18 Absorption in Debye-Scherrer specimens: (a) general case, (b) highly absorbing
specimen.
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edges of the specimen.* This difference in absorption between high-6 and low-0
reflections decreases as the linear absorption coefficient decreases, but the ab-
sorption is always greater for the low-6 reflections. We therefore write the Debye-
Scherrer absorption factor as A(f) to emphasize the fact that it varies with 6.
Qualitatively, we conclude that A(6) for any specimen increases as 26 increases.

Exact calculation of the absorption factor for a cylindrical specimen is often
difficult, so it is fortunate that this effect can usually be neglected in the calculation
of diffracted intensities, when the Debye-Scherrer method is used. J ustification of
this omission will be found in Sec. 4-11.

The calculation of A(6) for a cylindrical specimen proceeds as tollows. In Fig.
4-18(a) the path length (4B + BC), for a given value of 8, is expresséd as a function of
the position x, y of the point B relative to coordinate axes fixed relative to the specimen.
The absorption factor A(6) is then given by the function e~ MAB+BC) jntegrated over the
entire cross-sectional area of the specimen. This integration can only be performed
numerically. The result is a table of values of 4(0) as a function of @ and of the product
ur, where u is the linear absorption coefficient of the specimen and r is its radius. The
specimen is usually a powder compact, with an absorption coefficient given by

P
Hcompact = Hsolid (M) (4_12)
Psolid

where p is density.
Values of A(6) have been calculated and tabulated by Bradley [4.1]. Tables of values
can also be found in [G.11, Vol. 2, p. 295-299] and in [G.13, p. 663-666].

Diffractometer

A diffractometer specimen usually has the form of a flat plate making equal angles
with the incident and diffracted beams as in Fig. 34, if one imagines a poly-
crystalline plate substituted for the single crystal indicated there. It is shown
below that the absorption factor A is equal to 1/2u, independent of 6. This inde-
pendence of 8 is due to the exact balancing of two opposing efiects. When 6 is
small, the specimen area irradiated by an incident beam of fixed cross section is
large, but the effective depth of x-ray penetration is small; when 0 is large, the
irradiated area is small, but the penetration depth is relatively large. The net effect
is that the effective irradiated volume is constant and independent of 6. Absorption
occurs in any case, however, and the larger the absorption coefficient of the
specimen, the lower the intensity of the diffracted beams, other things being equal.
The important fact to note is that absorption decreases the intensities of all
diffracted beams by the same factor and therefore does not enter into the calculation
of relative intensities.

* The powder patterns reproduced in Fig. 3-13 show this effect, at least on the original
films. The lowest-angle line in each pattern is split in two, because the beam diffracted
through the center of the specimen is so highly absorbed. It is important to keep the
possibility of this phenomenon in mind when examining Debye-Scherrer photographs,
or split low-angle lines may be incorrectly interpreted as separate diffraction lines from
two different sets of planes.
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The calculation of 4 proceeds as follows. The incident beam in the diffrac-
tometer is actually divergent (Sec. 7-2), but we will assume here that the beam is
composed of parallel rays, because the divergence angle is very small (3° or less).
We will calculate the effect of absorption in the specimen on the intensity of the
diffracted beam, and, since this effect will come up again in later parts of this book,
we will make our calculation quite general. In Fig. 4-19, the incident beam has
intensity I, (ergs/cm?/sec), is 1 cm square in cross section, and is incident on the
powder plate at an angle y. We consider the energy diffracted from this beam by a
layer of the powder of length / and thickness dx, located at a depth x below the
surface. Since the incident beam undergoes absorption by the specimen over the
path length 4B, the energy incident per second on the layer considered is /,e ™ *(4®
(ergs/sec), where u is the linear absorption coefficient of the powder compact,
given by Eq. (4-12). Let a be the volume fraction of the specimen containing
particles having the correct orientation for reflection of the incident beam, and b
the fraction of the incident energy which is diffracted by unit volume. Then the
energy diffracted per second by the layer considered, which has a volume / dx, is
given by abll,e~*48) dx. But this diffracted energy is also decreased by absorption,
by a factor of e "B since the diffracted rays have a path length of BC in the
specimen. The energy flux per second in the diffracted beam outside the specimen,
i.e., the integrated intensity, is therefore given by

dip, = abllyje™"4B8+BO dx  (ergs/sec). (4-13)
But
,=.—l-, AB=‘X, BC='X .
sin y sin y sin f
Therefore,
dlD — Ioab e—ux(l/siny+l/sinli) dx. (4_14)
sin y

(The reader might note that the analogous absorption effect in transmission, rather
than reflection, is given later as Eq. (9-7.)

For the particular specimen arrangement used in the diffractometer, y = f =
0, and the above equation becomes

_ lf,ab .

d/, T 2ux/sin€ gy (4-15)

sin 0
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Fig. 4-19 Diffraction from a flat plate: incident and diffracted beams have a thickness of
1 cm in a direction normal to the plane of the drawing.
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The total diffracted intensity is obtained by integrating over an infinitely thick
specimen:

X =0
I, = J dr, = loat (4-16)
x=0 2#
Here Iy, b, and p are constant for all reflections (independent of 8) and we may
also regard a as constant. Actually, a varies with 6, but this variation is already
taken care of by the cos 6 portion of the Lorentz factor (see Sec. 4-9) and need
not concern us here. We conclude that the absorption factor 1/2yu is independent
of 6 for a flat specimen making equal angles with the incident and diffracted
beams, provided the specimen fills the incident beam at all angles and is effectively
of infinite thickness.

The criterion adopted for “infinite thickness” depends on the sensitivity of our
intensity measurements or on what we regard as negligible diffracted intensity. For
example, we might arbitrarily but quite reasonably define infinite thickness as that
thickness 7 which a specimen must have in order that the intensity diffracted by a thin
layer on the back side be 15'5g of the intensity diffracted by a thin layer on the front side.
Then, from Eq. (4-15) we have

= eZMl/sinO = 1000
dip (atx = r) ’

il

from which
‘= 3.45sin 6

u

This expression shows that “infinite thickness,” for a metal specimen, is very small
indeed. For example, suppose a specimen of nickel powder is being examined with
Cu Ko radiation at 6 values approaching 90°. The density of the powder compact may
be taken as about 0.6 the density of bulk nickel, which is 8.9 gm/cm?3, leading to a value
of u for the compact of 261 cm™!. The value of ¢ is therefore 1.32 x 10~2 cm, or about
five thousandths of an inch.

4-11 TEMPERATURE FACTOR

So far we have considered a crystal as a collection of atoms located at fixed points
in the lattice. Actually, the atoms undergo thermal vibration about their mean
positions even at the absolute zero of temperature, and the amplitude of this
vibration increases as the temperature increases. In aluminum at room temper-
ature, the average displacement of an atom from its mean position is about 0.17 A,
which is by no means negligible, being about 6 percent of the distance of closest
approach of the mean atom positions in this crystal.

Increased thermal vibration of the atoms, as the result of an increase in
temperature, has three main effects:

1. The unit cell expands, causing changes in plane spacings d and therefore in the
20 positions of the diffraction lines. If the positions of one or more lines are




136 Diffraction II: Intensities of diffracted beams

measured as a function of temperature (Sections 6-5 and 7-2), the thermal expan-
sion coefficient of the specimen can be determined by x-ray diffraction.

2. The intensities of the diffraction lines decrease.
3. The intensity of the background scattering between lines increases.

The second and third effects are described below. Here we are usually interested
not in intensity changes with temperature, but in variations in intensity with 20 at
constant temperature (usually room temperature).

Thermal agitation decreases the intensity of a diffracted beam because it has
the effect of smearing out the lattice planes; atoms can be regarded as lying no
longer on mathematical planes but rather in platelike regions of ill-defined thick-
ness. Thus the reinforcement of waves scattered at the Bragg angle by various
parallel planes, the reinforcement which is called a diffracted beam, is not as
perfect as it is for a crystal with fixed atoms. This reinforcement requires that the
path difference, which is a function of the plane spacing d, between waves scattered
by adjacent planes be an integral number of wavelengths. Now the thickness of
the platelike “planes” in which the vibrating atoms lie is, on the average, 2u, where
u is the average displacement of an atom from its mean position. Under these
conditions reinforcement is no longer perfect, and it becomes more imperfect as
the ratio u/d increases, i.e., as the temperature increases, since that increases u, or
as 0 increases, since high-8 reflections involve planes of low d value. Thus the
intensity of a diffracted beam decreases as the temperature is raised, and, for a
constant temperature, thermal vibration causes a greater decrease in the reflected
intensity at high angles than at low angles. In intensity calculations we allow for
this effect by introducing the temperature factor e~ 2™, which is a number by which
the calculated intensity is to be multiplied to allow for thermal vibration of the
atoms. Qualitatively, we conclude thai e~ 2™ decreases as 20 increases. A method
of calculating e™?™ when it is needed is outlined later, and Fig. 4-20 shows the
result of such a calculation for iron.

The temperature effect and the previously discussed absorption effect in
cylindrical specimens depend on angle in opposite ways and, to a first approx-
imation, cancel each other in the Debye-Scherrer method. In back reflection, for

0 1 2 3 4 5 6 7 8
51110(‘&_1)

Fig. 4-20 Temperature factor e=2™ of iron at 20°C as a function of (sin )/A.
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example, the intensity of a diffracted beam is decreased very little by absorption
but very greatly by thermal agitation, while in the forward direction the reverse is
true. The two effects do not exactly cancel one another at all angles; however, if
the comparison of line intensities is restricted to lines not differing too greatly in
g values, the absorption and temperature effects can be safely ignored in the Debye-
Scherrer method. This is a fortunate circumstance, since both of these effects are
rather difficult to calculate exactly.

Theoretically, thermal vibration of the atoms causes a very slight increase in
the breadth B, measured at half-maximum intensity, of the diffraction lines.
However, this expected effect has never been detected [4.2], and diffraction lines
are observed to be sharp right up to the melting point, but their maximum intensity
gradually decreases.

It is also worth noting that the mean amplitude of atomic vibration is not a
function of the temperature alone but depends also on the elastic constants of the
crystal. At any given temperature, the less “stiff”’ the crystal, the greater the
vibration amplitude ». This means that « is much greater at any one temperature
for a soft, low-melting-point metal like lead than it is for, say, tungsten. Substances
with low melting points have quite large values of # even at room temperature and
therefore yield rather poor back-reflection photographs. For example, thermal
atomic vibration in lead at 20°C reduces the intensity of the highest-angle line
observed with Cu Ka radiation (at about 161° 20) to only 18 percent (e~ ¥ = 0.18)
of the value for atoms at rest.

In only one application described in this book (Sec. 14-10) will we need any quanti-
tative information about the temperature factor e~ ?M, but it is convenient to describe
the calculation here. Formally, we allow for the effect by defining f as the atomic
scattering factor of an atom undergoing thermal vibration, f, as the same quantity for
an atom at rest, and relating the two by

f=foe ™.

(The quantity f; is then the scattering factor as usually tabulated, for example in Appendix
12.) Because the intensity of any line depends on f2, calculated intensities must be
multiplied by e~ 2™ to allow for thermal vibration. The quantity M depends on both the
amplitude « of thermal vibration and the scattering angle 26:

) : 2 : 2
M = 272 (-:—2) = 8n2 2 (ﬂz—e) - B (f":‘l—e) (4-17)

where u? is the mean square displacement of the atom in a direction normal to the

reflecting planes. The exact calculation of 2 as a function of temperature is extremely
difficult, which means that M or B is hard to determine accurately. Debye has given the

following expression:
on*T x] (sin €\?2
M = + = , 4-18
mk©? [¢(x) 4]( A ) 18

where h is Planck’s constant, T the absolute temperature, m the mass of the vibrating
atom, k& Boltzmann’s constant, © the Debye characteristic temperature of the substance




138 Diffraction I1: Intensities of diffracted beams

in °K, x = O/T, and ¢(x) is a function tabulated, along with values of ©, in Appendix 15.
Because m = A/N, where A = atomic weight and N = Avogadro’s number, the co-
efficient of the bracketed terms above becomes

61T  (6)(6.02 x 1026)(6.63 x 10‘3"')2T_ 1.15 x 10*T
mk©? AO%(1.38 x 10723)(10~20) A©?

if 4 is in angstroms. Equation (4-18) is approximate and applies only to elements with
cubic crystal structure.

For thorough treatments of the effect of thermal vibration on the diffraction pattern,
see James [G.7] and Warren [G.30].

The thermal vibration of atoms has another effect on diffraction patterns.
Besides decreasing the intensity of diffraction lines, it causes some general coherent
scattering in all directions. This is called temperature-diffuse scattering; it con-
tributes only to the general background of the pattern and its intensity gradually
increases with 26. Contrast between lines and background naturally suffers, so
this effect is a very undesirable one, leading in extreme cases to diffraction lines in
the back-reflection region scarcely distinguishable from the background. Figure
4-21 illustrates this effect. In (a) is shown an extremely hypothetical pattern (only
three lines, equally spaced, equally strong, with no background whatever) for atoms
at rest; in (b) the lines, decreased in intensity by the factor e~ 2™ , are superimposed
on a background of thermal diffuse scattering.

In the phenomenon of temperature-diffuse scattering we have another example,
beyond those alluded to in Sec. 3-7, of scattering at non-Bragg angles. Here again
it is not surprising that such scattering should occur, since the .displacement of
atoms from their mean positions constitutes a kind of crystal imperfection and
leads to a partial breakdown of the conditions necessary for perfect destructive
interference between rays scattered at non-Bragg angles.

The effect of thermal vibration also illustrates what has been called “the
approximate law of conservation of diffracted energy.” This law states that the
total energy diffracted by a particular specimen under particular experimental
conditions is roughly constant. Therefore, anything done to alter the physical
condition of the specimen does not alter the total amount of diffracted energy but

I I
] | ] |
0 90 180 0 90 180
20 (degrees) 26 (degrees)
(1) No thermal vibration (h) Thermal vibration

Fig. 4-21 Effect of thermal vibration of the atoms on a powder pattern. Very schematic,
see text.
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The agreement obtained here between observed and calculated intensities is
satisfactory. Note how the value of the multiplicity p exerts a strong control over
the line intensity. The values of |F|? and of the Lorentz-polarization factor vary
smoothly with 8, but the values of p, and therefore of I, vary quite irregularly.

A more complicated structure may now be considered, namely that of the
zinc-blende form of ZnS, shown in Fig. 2-19(b). This form of ZnS is cubic and
has a lattice parameter of 5.41 A. We will calculate the relative intensities of the
first six lines on a Debye-Scherrer pattern made with Cu Ko radiation.

As always, the first step is to work out the structure factor. ZnS has four zinc
and four sulfur atoms per unit cell, located in the following positions:

Zn: } 1 1 + face-centering translations,
S: 000 + face-centering translations.

Since the structure is face-centered, we know that the structure factor will be zero
for planes of mixed indices. We also know, from example (e) of Sec. 4-6, that the
terms in the structure-factor equation corresponding to the face-centering trans-
lations can be factored out and the equation for unmixed indices written down at
once:

F = 4[fs + f'zne(m'/Z)(h+k+l)].

|F|? is obtained by multiplication of the above by its complex conjugate:
IFI? = 160fs + frad ™/ * 0N fy + frpe™mrbeksn),
This equation reduces to the following form:

|F|? = l6|:f§ + f2. + 2fsfan cosg(h + k + I):'.

Further simplification is possible for various special cases:
[F1? = 16(f3 + f2) when (h + k + ) is odd; (4-22)
IF|? = 16(fs — f2.)? when (h + k + I)is an odd multiple of 2;  (4-23)

|FI2 = 16(fs + fz.)? when (h + k + 1) is an even multiple of 2.  (4-24)

The intensity calculations are carried out in Table 4-3, with some columns omitted
for the sake of brevity.

Remarks
Columns 5 and 6: These values are read from scattering-factor curves plotted from the
data of Appendix 12.

Column 7: |F|? is obtained by the use of Eq. (4-22), (4-23), or (4-24), depending on the
particular values of Akl involved. Thus, Eq. (4-22) is used for the 111 reflection and
Eq. (4-24) for the 220 reflection.

Columns 10 and 11: The agreement obtained here between calculated and observed in-
tensities is again satisfactory. In this case, both the values of |F|? and of p vary irregularly
with 6, leading to an irregular variation of 1.

One further remark on intensity calculations is necessary. In the powder
method, two sets of planes with different Miller indices can reflect to the same



4-12 Intensities of powder pattern lines 139

only its distribution in space. This “law” is not at all rigorous, but it does prove
helpful in considering many diffraction phenomena. For example, at low temper-
atures there is very little background scattering due to thermal agitation and the
diffraction lines are relatively intense; if the specimen is now heated to a high
temperature, the lines will become quite weak and the energy which is lost from the
lines will appear in a spread-out form as temperature-diffuse scattering.

4-12 INTENSITIES OF POWDER PATTERN LINES

We are now in a position to gather together the factors discussed in preceding
sections into an equation for the relative intensity of powder pattern lines.

Debye—-Scherrer Camera

2
(Approximate) I = |F|*p lf*—;ﬂs—io , (4-19)
sin® 6 cos 0

where I = relative integrated intensity (arbitrary units), F = structure factor,
p = multiplicity factor, and 6 = Bragg angle. The trigonometric terms in paren-
theses are the Lorentz-polarization factor. In arriving at this equation, we have
omitted factors which are constant for all lines of the pattern. For example, all
that is retained of the Thomson equation (Eq. 4-2) is the polarization factor
(1 + cos? 20), with constant factors, such as the intensity of the incident beam
and the charge and mass of the electron, omitted. The intensity of a diffraction
line is also directly proportional to the irradiated volume of the specimen and
inversely proportional to the camera radius, but these factors are again constant
for all diffraction lines and may be neglected. Omission of the temperature and
absorption factors means that Eq. (4-19) is valid only for lines fairly close together
on the pattern; this latter restriction is not as serious as it may sound. Finally, it
should be remembered that this equation gives the relative integrated intensity,
i.e., the relative area under the curve of intensity vs. 26.

If an exact expression is required, the absorption factor 4(6) and the tem-
perature factor e~ 2™ must be inserted:

2
(Exact) T = |FI?p (L5 20) 4gpe-2m. (4-20)
sin? 6 cos 0

Diffractometer

Here the absorption factor is independent of 6 and so does not enter into the
calculation of relative intensities. Equation (4-19) becomes still less precise,
because there is no longer any approximate cancellation of the absorption and
temperature factors. Equation (4-19) may still be used, for adjacent lines on the
pattern, but the calculated intensity of the higher-angle line, relative to that of the
lower-angle line, will always be somewhat too large because of the omission of
the temperature factor.
The exact equation for the diffractometer is

. 2
(Exact) [ = |F|%p (L S05” 20) -2m (4-21)
sin? @ cos 8
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Qualifications
The two following effects can make the above intensity equations invalid:

1) Preferred orientation. From the way in which the cos 8 portion of the Lorentz
factor was determined in Sec. 4-9, it follows that Egs. (4-19) through (4-21) are
valid only when the crystals making up the specimen are randomly oriented in
space. Preferred orientation of the crystal grains causes radical disagreement
between calculated and observed intensities and, when such disagreement exists,
preferred orientation should be the first possible cause to be suspected. It is rel-
atively easy to prepare powder-compact specimens from ground powders or metal
filings so that the ideal of perfect randomness of orientation is closely approached,
but virtually all polycrystalline specimens of metal wire, metal sheet, manu-
factured ceramics, and even natural rocks or minerals will exhibit more or less
preferential orientation of the grains.

2) Extinction [G.7, G.30]. As mentioned in Sec. 3-7, all real crystals are im-
perfect, in the sense that they have a mosaic structure, and the degree of imperfec-
tion can vary greatly from one crystal to another. Equations (4-19) through
(4-21) are derived on the basis of the so-called “ideally imperfect” crystal, one in
which the mosaic blocks are quite small (of the order of 10~% ¢cm to 10~ % cm in
thickness) and so disoriented that they are all essentially nonparallel. Such a
crystal has maximum reflecting power. A crystal made up of large mosaic blocks,
some or all of which are accurately parallel to one another, is more nearly perfect
and has a lower reflecting power. This decrease in the integrated intensity of the
diffracted beam as the crystal becomes more nearly perfect is called extinction.
Extinction is absent for the ideally imperfect crystal, and the presence of extinction
invalidates Eqgs. (4-19) through (4-21). Any treatment that will make a crystal
more imperfect will reduce extinction and, for this reason alone, powder specimens
should be ground as fine as possible. Grinding not only reduces the crystal size
but also tends to decrease the mosaic block size, disorient the mosaic blocks, and
strain them nonuniformly. (The theory of the extinction effect is difficult. To
prove that imperfections in a crystal increase its reflecting power would take us
too far afield, but an experimental proof is given in Sec. 8-7.)

The extinction effect can operate, not only in single-crystal specimens, but
also in the individual grains of polycrystalline specimens. Extinction may be
assumed to be absent in ground or filed powders and is usually negligible in fine-
grained polycrystalline specimens. If its presence is suspected in the latter, the
specimen can always be reduced to powder by grinding or filing.

4-13 EXAMPLES OF INTENSITY CALCULATIONS

The use of Eq. (4-19) will be illustrated by the calculation of the position and
relative intensities of the diffraction lines on a Debye-Scherrer pattern of copper,
made with Cu Ka radiation. The calculations are most readily carried out in
tabular form, as in Table 4-2.

Remarks

Column 2: Since copper is face-centered cubic, F is equal to 4f, for lines of unmixed
indices and zero for lines of mixed indices. The reflecting plane indices, all unmixed, are
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4-13
Table 4-2
1 2 3 4 5 [ 7 8
Line | hkl | A2 + k2 412 | sin26 sin 6 g s'—'lf (A=) | fcu
1 1M 3 01365 | 0369 | 21.7° 0.24 221
2 200 4 0.1820 | 0427 | 253 0.27 20.9
3 220 8 0.364 0.603 | 37. 0.39 16.8
4 311 11 0.500 0.707 | 45.0 0.46 14.8
5 222 12 0.546 0739 | 47.6 0.48 14.2
6 400 16 0.728 0.853 | 585 0.55 12.5
7 331 19 0.865 0.930 | 68.4 0.60 11.5
LS 420 20 0.910 0954 | 72.6 0.62 1.1
1 9 10 11 12 13 14
) 1 + cos? 26 Relative integrated intensity
Line F? p =
sin?@ cos ¢ Calc. Calc. Obs.
1 7810 8 12.03 7.52 x 105 10.0 vs
2 6990 6 8.50 3.56 4.7 s
3 4520 12 3.70 2.01 27 s
4 3500 24 2.83 2.38 3.2 s
5 3230 8 2.74 0.71 0.9 m
6 2500 6 3.18 0.48 0.6 w
7 2120 24 4.81 2.45 3.3 s
8 1970 24 6.15 2.91 3.9 s

written down in this column in order of increasing values of (A* + k2 +1?), from
Appendix 10.
Column 4 For a cubic crystal, values of sin? 8 are given by Eq. (3-10):

. A2
sin? 8 = e H? + k2 + 1?).

In this case, A = 1.542 A (Cu Ka) and a = 3.615 A (lattice parameter of copper). There-
fore, multiplication of the integers in column 3 by A%/4a® = 0.0455 gives the values of
sin? @ listed in column 4. In this and similar calculations, three-figure accuracy is ample.
Column 6: Needed to determine the Lorentz-polarization factor and (sin 6)/A.

Column 7: Obtained from Appendix 11. Needed to determine fc,.

Column 8 : Obtained from Appendix 12.

Column 9: Obtained from the relation F2 = 16f&,.

Column 10: Obtained from Appendix 13.

Column 11: Obtained from Appendix 14.

Column 12: These values are the product of the values in columns 9, 10, and 11, according
to Eq. (4-19).

Column i3: Values from coiumn i2 recaiculated to give the firsi line an arbitrary inlensity
of 10, i.e., “normalized” to 10 for the first line. '

Column 1{ : These entries give the observed intensities, visually estimated according to
the following simple scale, from the original film for copper in Fig. 3-13 (vs = very strong,
S = strong, m = medium, w = weak).
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The agreement obtained here between observed and calculated intensities is
satisfactory. Note how the value of the multiplicity p exerts a strong control over
the line intensity. The values of |F |? and of the Lorentz-polarization factor vary
smoothly with 8, but the values of p, and therefore of I, vary quite irregularly.

A more complicated structure may now be considered, namely that of the
zinc-blende form of ZnS, shown in Fig. 2-19(b). This form of ZnS is cubic and
has a lattice parameter of 5.41 A. We will calculate the relative intensities of the
first six lines on a Debye-Scherrer pattern made with Cu Ka radiation.

As always, the first step is to work out the structure factor. ZnS has four zinc
and four sulfur atoms per unit cell, located in the following positions:

Zn: } } 1 + face-centering translations,
S: 000 + face-centering translations.

Since the structure is face-centered, we know that the structure factor will be zero
for planes of mixed indices. We also know, from example () of Sec. 4-6, that the
terms in the structure-factor equation corresponding to the face-centering trans-
lations can be factored out and the equation for unmixed indices written down at
once:
F = 4[fs + one(m’/Z)(h+k+l)].

|F|? is obtained by multiplication of the above by its complex conjugate:

|F|2 = ]6[fS + fzne(ni/Z)(h+k+l)][fs + fzne—(ui/Z)(h+k+l)]. '

This equation reduces to the following form:
|F|* = 16[f§ + f2. + 2fsfza cos—;t(h + k + l)].

Further simplification is possible for various special cases:
|F|2 = 16(f2 + fZ) when (h + k + 1) is odd; (4-22)
|FI12 = 16(fs — f2) when (h + k + [) is an odd multiple of 2;  (4-23)
|F|2 = 16(fs + fza)>  when (h + k + l)isaneven multiple of 2.  (4-24)

The intensity calculations are carried out in Table 4-3, with some columns omitted
for the sake of brevity.

Remarks

Columns 5 and 6: These values are read from scattering-factor curves plotted from the
data of Appendix 12.

Column 7: |F|? is obtained by the use of Eq. (4-22), (4-23), or (4-24), depending on the
particular values of hkl involved. Thus, Eq. (4-22) is used for the 111 reflection and
Eq. (4-24) for the 220 reflection.

Columns 10 and 11: The agreement obtained here between calculated and observed in-
tensities is again satisfactory. In this case, both the values of |F|? and of p vary irregularly
with 0, leading to an irregular variation of I

One further remark on intensity calculations is necessary. In the powder
method, two sets of planes with different Miller indices can reflect to the same
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